COMPUTATIONAL PHYSICS

SBU, FALL 2018

Course objectives

The main objective of this course is to extend and deepen theoretical and practical computational skills of graduate students of physics who have taken a related introductory course (e.g. computer applications in Physics). During lectures and hands-on sessions, the students would learn how to employ numerical methods to attack physics problems, in particular when they face a sophisticated problem in their current and future research activity.

Course theme

The course consists of lectures and hands-on sessions and addresses both methodological aspects and applications. The first part introduces/reviews **basic and selected advanced computational methods, and is** followed by a second part where a number of related physics **simulation experiments** are presented to show how computers can be served as a virtual lab for studying physical phenomena.

Syllabus

The main topics will be covered is as the following: computational physicist's view of computers, concepts of scientific programming, Fortran 90 quick review, numeric arithmetic and errors, interpolation, differentiation, integration, data fitting, direct & iterative linear algebra, root finding, function minimization, genetic algorithm, structure prediction, ODE & PDE, randomness, Monte Carlo methods, classical force-fields, MD, Langevin Eq., Nonlinear dynamics methods.

Evaluation policy:

Exam(s): 25%, Exercises+Projects: 75%, Bonus Project: +10%

Exercises:

You will be asked to answer several exercises during the course. Sometimes you should derive or prove an expression while in some cases you are asked to write up a program to implement an algorithm. If your solution contains several files (program body, numerical results, plots, etc.) Please hand in only a single tar/zip file. Solutions should be sent by email to <u>ali.sadeqi@gmail.com</u>, with a subject congaing the exercise-number and your-name. Please note that late solutions will not be accepted.

Projects:

Students must complete two projects during the course. The projects may be presented orally in the class or submitted as a paper-like report (in Farsi or English, with sections such as Introduction, Methods, Results, Discussion and Conclusions).

* Students wishing to get an extra credit (up to 10%) may propose, solve and present a project-like problem based on what they will learn in the course.

Prerequisites:

Physics background: You are expected to have passed successfully an undergraduate-level course on computational physics. You should be familiar with classical mechanics, electrostatics, quantum mechanics, thermodynamics and statistical physics and mathematical physics.

Programming skills: For doing exercises and projects, you need to know a programming/scripting language. You may use your favourite high-level language/packege which can be Fortran, c/c++, python, MATLAB, Maple and so on. We will use Fortran 90 in the lectures and hands-on sessions.

Computer workstation: For the practical part of the course, you may use either your own laptop/PC or the computer workstations at the Physics Department Computer Lab. As operating system, a distribution of Linux is recommended and will be used in the hands-on sessions. Still, you may use your favourite operating system, but then you have to learn on your own what you would need.

Softwares: You need to install and know how to some softwares to do the following tasks. Those mentioned in parentheses are installed on the workstations of the Computer Lab:

- compiler (gfortran, or Intel's non-commercial fortran compiler)
- text editor for writing/editing your programs (vim)
- plotting software (gnuplot)
- file handling tools (awk, sed)

Recommended books:

I cannot find a textbook that cover all the topics we will address. We therefore use multiple references, supported by additional materials (handouts, book chapters, etc.). Many of the topics are well described in **Refs. 1,2,3 and 11.** Other references are excellent (undergraduate) textbooks for those who need a review.

- 1. Philipp O.J. Scherer, Computational Physics: Simulation of Classical and Quantum Systems
- 2. Rubin H. Landau, Manuel José Páez, Cristian C. Bordeianu, A Survey of Computational Physics
- 3. Morten Hjorth-Jensen, Computational Physics
- 4. Joel Franklin, Computational Methods for Physics
- 5. Franz J. Vesely, Computational Physics An Introduction
- 6. Tao Pang, An Introduction to Computational Physics
- 7. J.M. Thijssen, Computational Physics
- 8. Nicholas J. Giordano, Computational Physics
- 9. Harvey Gould and Jan Tobochnik, An Introduction to Computer Simulation Methods
- 10. Dieter W. Heermann, Computer Simulation Methods in Theoretical Physics

Books in persian:

- مهدی نیک عمل و امین الله واعظ و امیر لهراسیبی، آشنایی با روشهای شبیه سازی در فیزیک.11
- بهمن مهرى و رضا نخعى، محاسبات عددى .12

Useful links:

Computational Physics:

http://homepage.univie.ac.at/franz.vesely/cp_tut/nol2h/new/index.html

https://eee.uci.edu/04s/47520/p131spring04/index.html

http://stp.clarku.edu/simulations/

http://web.mit.edu/redingtn/www/netadv/Xmontecarl.html

Fortran:

http://www.tutorialspoint.com/fortran/index.htm

http://physics.bu.edu/py502/lectures1/f90.pdf

http://www.chem.helsinki.fi/~manninen/fortran2014

http://fortranwiki.org/fortran/show/HomePage

http://www.mie.uth.gr/ekp_yliko/fortran_quick_reference_cheat_crib_sheet.pdf

Linux:

http://physics.sharif.ir/~jafari/doc/chap1-linux.pdf

http://www.comptechdoc.org/os/linux/usersguide/linux_ugbasics.html

http://www.linuxdevcenter.com/excerpt/LinuxPG_quickref/linux.pdf

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

http://ss64.com/bash/

Gnuplot:

http://www.gnuplotting.org/about/

http://www.manpagez.com/info/gnuplot/gnuplot-4.2.3/gnuplot_toc.php#SEC_Contents

http://www.phyast.pitt.edu/~zov1/gnuplot/html/gallery.html

vim:

http://rayninfo.co.uk/vimtips.html

awk:

http://www.grymoire.com/Unix/Awk.html

Python:

https://scipy-lectures.github.io/

https://wiki.python.org/moin/BeginnersGuide

Tentative Course Outline

Note: Based on the class needs, this outline is subject to small changes.

Time line	Lecture	Hands-on	Theme
Week 1 6/25	Introduction and demonstrative examples Algorithm complexity		Programming
Week 2	Scientific programming Computer architecture Variable types in computer memory		
Week 3 7/8	Numeric precision & errors Numeric differentiation High-order & high precision differentiation		Basic Numeric Methods
Week 4	Numeric integration Iterative root finding Function minimization	f90 programming compiling optimization f90-gnuplot combination for plotting	
Week 5 7/22	Multidimensional minimization Inter-atomic potentials Energy minimization of structures		
Week 6	Geometry relaxation by SD, CG, FIRE Atomic vibrations from Hessian Matrix diagonalizing	Visualizing atomic structures Efficient matrix operations in f90 linking to BLAS & LAPACK libraries	Atomistic simulations

Time line	Lecture	Hands-on	Theme	
Week 7	Integrating equations of motion Principles of molecular dynamics PBC Simulated annealing & structure prediction		Classical Molecular Mechanics	
Week 8 8/14	Langevin Eq. Thermodynamics from MD Nonlinear dynamics and choas			
	Midterm Exam			
week 9	Thermodynamics from MC (Pseudo-) randomness Ising model		Statistical	
week 10	Monte Carlo integration: high-dimensional integration Parallel programming & HPC & GPU Ising with OMP		physics	
week 11 9/5	Quantum Monte Carlo for He and H2 Introduction to electronic structure methods Schrodinger Eq. in 1D with basis set Large system of linear equations A x = b		Quantum mechanics	
Week 12	Electrostatics: iterative methods vs A x=b Singular value decomposition Principal Component Analysis		Linear Algebra	

Time line	Lecture	Hands-on	Theme
week 13	Probability Distribution Functions		
week 14 9/26	Kernel methods Regression for prediction Principles of artificial neural networks		Machine
week 15	Project presentations		Learning
	Unsupervised learning Clustering		
week 16	Project presentations		
	Concluding remarks		