

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

Daubechies Wavelets in Electronic Structure Calculation: BigDFT Code Tutorial

CECAM - GRENOBLE

Charge Analysis: Atoms in Molecules

Ali Sadeghi

Basel University

21 November 2011

Charge Analysis

BigDFT-tools

Charge Analysis

- Methods
- Bader's Method
- Applications
- With BigDFT
- Summary

An output of electronic structure calculations like DFT is the electronic density $n(\mathbf{r}) = |\psi(\mathbf{r})|^2$ which is a continuous quantity.

Charge partitioning between atoms

- Q: where are atoms in molecules/bulks?
- Main-product:

charge exchange between bonded atoms

- ideal ionic bond: 1e transfered ($q_{\alpha} = \pm 1$)
- ideal covalent bond: 2e shared ($q_{\alpha} = 0$)
- otherwise ?
- Side-product: decomposed quantities

$$A = \sum_{\alpha}^{atoms} A_{\alpha}$$

Atomic Domains

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

Atomic domains?

- No real & clear boundaries between atoms!
- Many possible definitions & methods

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

Methods

- No quantum-mechanical considerations
- Not using electronic structure
- Using atomic wave-functions $\psi_{\alpha}(\mathbf{r})$
- Using the real-space electronic density $n(\mathbf{r})$

Approaches

• Partitioning the space

$$q_{\alpha} = Z_{\alpha} - \int_{V_{\alpha}} n(\mathbf{r}) d^3 r$$

• Partitioning the charge density

$$q_{\alpha} = Z_{\alpha} - \int n_{\alpha}(\mathbf{r}) d^3r$$

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

Non QM-based methods:

Using experimental data

• charges, dipoles, ...

Voronoi polyhedra

- assign nearest atom to each point
- $q_{\alpha} = Z_{\alpha} \int_{V_{\alpha}} n(\mathbf{r}) d^3 r$
- solely mathematical!
- atomic types not considered
- possible unreasonable results!

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

Non electronic structure based methods

ESP fitting method

- Point charges as effective atomic charges q_{α}
- Fitting q_{α} to reproduce electrostatic potential (ESP)
- Least-squares minimization with constraints
 - total charge
 - total dipole

• ...

$$\sum_{i}^{M_{sampling}} \left(\sum_{\alpha}^{N_{atom}} V^{q_{\alpha}}(\vec{r}_{i}) - V^{o}(\vec{r}_{i}) \right)^{2} + \lambda (\sum_{\alpha}^{N_{atom}} q_{\alpha} - q_{tot})^{2} + \dots$$

- Sampling points \vec{r}_i only out of atomic regions e.g. r_{vdW}^{α}
- Small RMS is not guaranteed!

D. Chen et al JPC. A, 114, 37 (2010)

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

Electronic structure based methods

Using **atomic** wave-functions $\psi_{\alpha}(\mathbf{r})$

- easy for LCAO basis :)
- dependency on basis set :(
- unreasonable q_{α} without orthogonal basis (Lowdin)

The most common method:

Mulliken population analysis

- \bullet projecting $\psi(\textbf{r})$ on atomic basis
- $n_{\alpha}(\mathbf{r}) = |\Psi_{\alpha}|^2$
- $q_{\alpha} = Z_{\alpha} \int n_{\alpha}(\mathbf{r}) d^3r$
- orbitals population analysis
- old and simple

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

Electronic structure based methods

Voronoi Deformation Density

• Space is partitioned by Voronoi polyhedra

• Use

- electronic density *n*(**r**)
- WRT density of non-interacting atoms n_{α}^{o}
- i.e. the deformation density $\Delta n = n \sum n_{\alpha}^{o}$

•
$$q_{lpha} = \int_{V_{lpha}} \Delta n d^3 r$$

In addition to *n*, it uses both:

atomic orbitals

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

Electronic structure based methods

Weighted distributing

- Distribute $n(\mathbf{r})$ according to atomic weights $w_{\alpha}(\mathbf{r})$
 - $n_{\alpha}(\mathbf{r}) = w_{\alpha}(\mathbf{r})n(\mathbf{r})$
 - weights are normalized: $\sum w_{\alpha}(\mathbf{r}) = 1$
 - fuzzy boundaries (if w_{α} are not truncated)

•
$$q_{\alpha} = Z_{\alpha} - \int w_{\alpha}(\mathbf{r}) n(\mathbf{r}) d^3$$

• Simple Gaussian $w_{\alpha}(\mathbf{r}) \propto e^{-|\mathbf{r}-\mathbf{r}_{\alpha}|^{2}/r_{\alpha,o}^{2}}$

• $r_{\alpha,o}$ = covalence, ionic, vdW, ... radius

- Hirshfeld $w_{\alpha}(\mathbf{r}) \propto n_{\alpha}^{o}(\mathbf{r})$
 - $q_{\alpha} = \int (n_{\alpha}^{o} w_{\alpha}n)d^{3}r = \int n_{\alpha}^{o}(1 \frac{n(\mathbf{r})}{\sum n_{\alpha}^{o}})d^{3}r$
- Non-interacting atoms are important:
 - either atomic radius or electronic density

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

Electronic structure based methods

Bader (AIM)

- Only use real-space density *n*(**r**)
- sharp boundaries!
- $q_{\alpha} = Z_{\alpha} \int_{V_{\alpha}} nd^3r$
- Use *n*-topology to find V_{α} :
 - *n* is maximized on nuclei
 - curvatures=eigenvalues of $\nabla^2 n$
 - critical points: $\vec{\nabla} n = 0$
 - zero-flux surfaces are boundaries: $\vec{\nabla} n \cdot \vec{u} = 0$

Bader Method

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

Topology of electronic density $n(\mathbf{r})$ helps:

Tracking Gradient of n

- $\vec{\nabla}n$ shows the steepest ascent direction at any point
- maxima in *n* coincide with nuclei positions
- the space is partitioned to some basins:
 - ideally, one Bader volume for each atom

http://theory.cm.utexas.edu/henkelman/research/bader

Bader Method

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

Grid-based tracking of $\vec{\nabla}n$

- A fast, robust and linear scaled numerical algorithm:
 - Follow steepest ascent path along $\vec{\nabla}n$ to next grid point
 - repeat until an *n* maximum is reached (a nuclei is found)
 - assign all points in the path to this maximum
 - repeat for any unassigned grid point
 - if previously assigned points are reached, terminate the path and group them together (linearity)
- refinement needed at boundaries
- might fail for smooth pseudopotential (shallow maxima)

http://theory.cm.utexas.edu/henkelman/research/bader

Bader Method

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

The Henkelman's group implementation

- is already used as a post-processing tool in different packages including BigDFT
- can be used for periodic or molecular systems:

B atoms in Si crystal:

 $q_H = +0.59$ $q_O = -1.18$

http://theory.cm.utexas.edu/henkelman/research/bader

Multipole Moments

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

• charge:
$$q = \sum_{\alpha} q_{\alpha} = \sum_{\alpha} (Z_{\alpha} - \int_{V_{\alpha}} nd^{3}r)$$

• dipole: $\vec{P} = \sum_{\alpha} (\vec{P}_{\alpha}^{chg} + \vec{P}_{\alpha}) = \sum_{\alpha} (Z_{\alpha}\vec{r}_{\alpha} - \int_{V_{\alpha}} \vec{r}nd^{3}r)$
• quadrupoles : $Q^{i,j} = \sum_{\alpha} Q_{\alpha}^{i,j}$

- $q = 0 \Rightarrow \vec{P}$ is origin-independent.
- If $\vec{P} \neq 0 \Rightarrow Q^{i,j}$ are origin-dependent!
- $q_{\alpha} \neq 0 \Rightarrow \vec{P}_{\alpha}$ depends on origin!
- $\vec{P}_{\alpha} + \vec{P}_{\alpha}^{chg}$ is origin-independent
 - \vec{P}_{α} : from intra-atomic polarization
 - \vec{P}_{α}^{chg} : from cores & charge-transfer

Could atomic contributions be defined? A =

$$\sum_{\alpha}^{Natoms} A_{\alpha}$$

NI

Yes, but with special care!

Charge Analysis with BigDFT

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

Charge analysis with BigDFT is possible in two ways:

On-the-fly: Mulliken population analysis

• set InputPsiId=10 in input.dft

								 		- 1	4ulliken (Charg	ge Populat	:ic	on Analysis
enter	No.	1		Shell		Rad	(AU)	Chg	(up)		Chg (down	1)	Net Pol	I.	Gross Chg
1		1	S				0.88	0.1	28516		0.28516		0.00000	I.	0.42969
				Center	Quar	ntit	ies :	0.1	28516	I	0.28516		0.00000	L	0.42969
2			S		- I		0.46	0.	91603		0.91603		0.00000		0.16793
2		1	рх				0.31	0.	98456		0.98456		0.00000	I.	-0.63578
2		1	ру		- I		0.31	0.	81913		0.81913	1	0.00000	L	-0.30492
2		1	pz		- I		0.31	0.	67762		0.67762	1	0.00000	L	-0.02191
				Center	Quar	ntit	ies :	3.	39734		3.39734		0.00000	L	-0.79468

Post-processing: Bader or Veronoi charge analysis

- set Output_Grid=1 in input.dft to get charge density
- use bader tool with the charge density
 - bader [-c voronoi] [electronic_density.cube]

atom#	CHARGE: core	electronic	net
1	+1.00000	-0.40727	+0.59273
2	+6.00000	-7.18542	-1.18542
3	+1.00000	-0.40731	+0.59269

Comparison

Water molecule with BigDFT: Comparing to Bader's method (AIM),

BigDFT-tools

- Charge Analysis
- Methods
- Bader's Method

Applications

With BigDFT

Summary

- Gaussian overestimates
- Voronoi is not trustable!

	Bader	Mulliken	Gaussian	Voronoi
0	-1.2	-0.8	-1.3	+0.7
Н	+.0.6	+0.4	+0.65	-0.35

For a series of organic molecules: $|q_{Hirshfeld}| < |q_{Mullekin}| < |q_{Bader}|$

(D. Proft et al. J. Comp. Chem. 23, 12 (2002))

Summary

BigDFT-tools

Charge Analysis

Methods

Bader's Method

Applications

With BigDFT

Summary

- Several existing definitions/methods:
 - either partition space or charge between atoms
 - use molecule geometry, electrostatic potential, atomic orbitals/radii, electronic density (*n*), ...
 - are not completely consistent
- Atoms in a molecule can not (always) be clearly defined!
- Bader's method, based on *n*-topology, seems more reliable
- Grid method, a computational method, is efficient, robust, and linearly scaled with grid size; the code is freely available
- Care should be taken in defining atomic contributions to an observable $A = \sum_{\alpha}^{N} A_{\alpha}$
- With BigDFT one can do Mulliken, Bader, Voronoi and Gaussian charge analysis

Thank you for your attention!