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Abstract

Cost measure matrices or different amino acid indices have been widely used for studies in many fields of biology. One major criticism

of these studies might be based on the unavailability of an unbiased and yet effective amino acid substitution matrix. Throughout this

study we have devised a cost measure matrix based on the solvent accessibility, residue charge, and residue volume indices. Performed

analyses on this novel substitution matrix (i.e. solvent accessibility charge volume (SCV) matrix) support the uncontaminated nature of

this matrix regarding the genetic code. Although highly similar to a number of previously available cost measure matrices, the SCV

matrix results in a more significant optimality in the error-buffering capacity of the genetic code when compared to many other amino

acid substitution matrices. Besides, a method to compare an SCV-based scoring matrix with a number of widely used matrices has been

devised, the results of which highlights the robustness of this matrix in protein family discrimination.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. The canonical genetic code: theories and concepts

The codon assignments in the canonical genetic code
play an undeniable role in connecting the genomic world
where the mutations take place to the proteomic world
where natural selection is capable of affecting survival of
the corresponding organisms (Fitch and Upper, 1987; Zhu
and Freeland, 2006). Yet, the nature of this role and the
notion of the very evolution of the code itself are highly
debated among the researchers (reviewed in Freeland et al.,
2003; Di Giulio, 2005). As Di Giulio (2005) puts it, two
e front matter r 2007 Elsevier Ltd. All rights reserved.

i.2006.12.014

: SCV, solvent accessibility charge volume; CRM, code-

x

ing author. Tel.: +1609 258 3658.

ess: goodarzi@princeton.edu (H. Goodarzi).
deterministic forces might be speculated in the evolution of
the genetic code:
1.
 Physicochemical determinism: Natural selection had
produced a redundant code that buffered phenotype
from genetic errors by ensuring a high proportion of
silent point mutations (Sonneborn, 1965; Zuckerkandl
and Pauling, 1965) and a less drastic effect even when
the mutation does occur (Alff-Steinberger, 1969; Gold-
berg and Wittes, 1966). Quantitative support for this
hypothesis is developed by the use of computer
simulations in many studies (Haig and Hurst, 1991;
Freeland and Hurst, 1998; Gilis et al., 2001; Goodarzi
et al., 2004; Goodarzi et al., 2005a–c).
2.
 Historical determinism: The structure of the genetic code
reflects the biosynthetic pathway of amino acid forma-
tion. This idea presented by Wong (1975) is studied
intensely by Di Giulio (1997a, b, 1999, 2000).

www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2006.12.014
mailto:goodarzi@princeton.edu


ARTICLE IN PRESS
H. Goodarzi et al. / Journal of Theoretical Biology 245 (2007) 715–725716
The search for the major selection pressure for the
evolution of the genetic code seems far from over and the

debates seem unresolved; yet, many clues are added to our
knowledge of the code since the introduction of these
theories (Ellington et al., 2000; Di Giulio, 2001, 2005;
Goodarzi et al., 2005b, c; Zhu and Freeland, 2006).

1.2. The case for an error minimizing code

In spite of a sophisticated growth in analytical evidence
to support the case for an ‘‘error minimization’’ hypothesis,
many facets of this theory remain ill-explored, including
the mechanism and pathway by which an adaptive pattern
of codon assignments emerged, the extent to which natural
selection created synonym redundancy, its role in shaping
the amino acid and nucleotide languages, and even the
correct interpretation of the adaptive codon assignment
pattern (Freeland et al., 2003).

Many recent studies on this subject include computer
simulations in quantifying the extent to which the
canonical genetic code is capable of minimizing the effects
of mistranslations, point mutations, and more recently
shown, ins/del mutations (Goodarzi et al., 2005c). These
analyses are based on two major constituents:
1.
 Fitness functions: Created to assign a score to every
given code based on its load minimizing ability, these
functions are used extensively in many analytical studies
(Haig and Hurst, 1991; Freeland and Hurst, 1998; Gilis
et al., 2001; Freeland, 2002; Archetti, 2004; Goodarzi
et al., 2004, 2005a–c). In this study, one of the recently
proposed fitness functions is used:

jfaa ¼
X64
c¼1

p a cð Þ½ �

n a cð Þ½ �

X64
c0¼1

p c0 cjð Þ � g a cð Þ; a c0ð Þ½ �

ðGiles; 2001Þ, ð1Þ

where p[a(c)] returns the relative frequency of the amino
acid a(c) coded by codon c, n[a(c)] is an integer standing
for the number of synonymous codons of amino acid
a(c), and g[a(c),a(c0)] is a cost measure function which
illustrates the deleterious effect of the amino acid
substitution resulted from the misinterpretation of
codon c as c0. p(c0|c) is the probability of codon c being
misinterpreted as codon c0 (the values chosen by
Freeland and Hurst, 1998).
2.
 Random code generation: Fitness scores are calculated
for randomly generated codes; by comparing the results
to that of the canonical one, a quantitative measure of
the optimality of the code is obtained. Haig and Hurst
(1991) chose the following rules for generating random
codes: the codon space (i.e., the possible 64 codons) is
divided into the same 21 non-overlapping sets of codons
observed in the standard code, each set comprising all
codons specifying a particular amino acid in the
standard code; the three stop codons remain in the
same position of the standard code for all alternative
codes, while each of the 20 amino acids is assigned
randomly to one of these sets to form an alternative
code.
Each of these basic ideas has faced its own critiques. For
example, Di Giulio (2000) claimed that although the
frequency of the codes that perform better than the
canonical one is roughly 106 (or 109 in other studies),
considering the vast number of possible codes (20! in case
of the classic method of random code generation) results in
a very high number of better alternative codes. Besides,
many of the random codes differ drastically from the
canonical genetic code or its presumed ancestors and are
unlikely to be obtained by small mutations. These
arguments have resulted in an alternative method of
generating random codes (Archetti, 2004).
Another debated parameter in the abovementioned

studies is the function g[a(c),a(c0)]. Many amino acid
substitution matrices such as PAM74�100 are used to serve
as cost measure functions (Table 1); yet, as Di Giulio
(2001) has shown the amino acid substitution matrices that
are based on the observations on contemporary and real
proteins are flawed by the contamination of the genetic
code itself and are useless in such analyses. It is difficult to
untangle contamination with the genetic code from
significant associations between measures of mutation cost
and the genetic code, in part because almost all matrices
include subtle biases (for example, the set of proteins
chosen for crystallographic work is decidedly non-random
and biased towards members of large multigene families
involved in core metabolic and regulatory processes). Thus,
the main source of information for measuring the cost of
mutations should be obtained from the amino acid indices
that include only the physicochemical characteristic of each
of the amino acids. Many amino acid indices such as Polar
requirement (Woese et al., 1966), Hydrophobicity scales
(Engelman et al., 1986; Nozaki and Tanford, 1971), and
Hydropathic character (Kyte and Doolittle, 1982) are used
in different studies to measure optimality of the genetic
code. Yet, each of these indices covers a limited portion of
the physicochemical properties of each amino acid
as a whole. In this study, we have tried to devise an amino
acid substitution matrix, which includes the polarity, the
charge, and the volume of each residue to measure the cost
of each mutation. This matrix, designated the
solvent accessibility charge volume (SCV) matrix, was
shown to be unbiased towards the genetic code (i.e. not
contaminated by the genetic code). Moreover, the
optimality measurement analyses using this matrix further
reveal the robustness of the genetic code in minimizing the
effects of mistranslations. Applying this novel matrix to
untangle protein classification problems reveals that this
matrix is as efficient as database-driven matrices such as
PAM50, which further highlights the credibility of this
matrix.
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Table 1

A number of common cost measure matrices and indices previously used in prior studies

Cost measure Introduced in Used in Corresponding cost function

PAM74–100 Benner et al. (1994) Freeland et al. (2000), Gilis et al. (2001),

Goodarzi et al. (2004)

g (a1,a2) ¼ �h (a1,a2)

Mutation Gilis et al. (2001) Gilis et al. (2001), Goodarzi et al. (2004) g (a1,a2) ¼ �h (a1,a2)

Polar requirement Woese et al. (1966) Haig and Hurst (1991), Freeland and Hurst

(1998), Gilis et al. (2001)

g (a1,a2) ¼ jh(a1)�h(a2)j

Hydrophobicity scale #1 Engelman et al. (1986) Zhu et al. (2003) g (a1,a2) ¼ jh(a1)�h(a2)j

Hydrophobicity scale #2 Nozaki and Tanford (1971) Zhu et al. (2003) g (a1,a2) ¼ jh(a1)�h(a2)j

Hydropathic character Kyte and Doolittle (1982) Zhu et al. (2003) g (a1,a2) ¼ jh(a1)�h(a2)j
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2. Materials and methods

2.1. The amino acid properties used to construct the SCV

matrix

Initially, three amino acid properties were used to
construct the SCV matrix: the percentage of exposure for
each amino acid (Chen et al., 2004), residue volume
(Zamyatin, 1972), and residue charge. The SCV matrix is
devised based on a linear relationship among these
properties that would define each amino acid:

g a; a0ð Þ ¼ S að Þ � S a0ð Þ
�� ��þ a � V að Þ � V a0ð Þ

�� ��
þ b � C að Þ � C a0ð Þ

�� ��, ð2Þ

where S is the solvent accessibility, C is the residue charge,
and V is the residue volume of each amino acid (all these
parameters are normalized to a range of 0–1). a and b, the
values of which are chosen later, are linear constants
combining these amino acid properties to form a proper
cost measure matrix. This equation is similar to the one
introduced by Grantham (1974) based on amino acid
composition, molecular volume, and polarity; yet, our
analyses showed that SCV is a more reliable matrix in
terms of protein family discrimination through pair-wise
alignments (data not shown).

2.2. Rules for generating random codes

In this study, two methods have been used for generating
random codes: (i) the degenerate method that theoretically
is capable of producing any possible code and (ii) the
constrained classic method, which is a limited permutation
of amino acids in their fixed positions.

2.2.1. The degenerate method

When using this method, we are not interested in
studying the canonical genetic code and its optimality;
yet, we are trying to scan all the possible alternative codes
that might have been proved to be more efficient than the
canonical one in load minimization. Generating random
codes is not simply assigning each codon randomly to a
chosen amino acid due to the fact that the degeneracy of
the code would not be preserved. To this end, the
degenerate method of random code generation introduced
by Goodarzi et al. (2005c) has been used (for details see the
original paper). This method of generating random codes
assigns a random number of synonymous codons as well as
random codons to each amino acid while preserving the
degeneracy of the generated codes (for details see Goodarzi
et al., 2005c).
2.2.2. The classic method

The following method (as in Archetti, 2004) has been
used to create random codes:
1.
 The ‘‘codon space’’ is divided into 21 non-overlapping
sets of codons observed in the canonical code, each set
specifying an amino acid in the natural genetic code (one
set consists of stop codons).
2.
 Each alternative code is obtained by randomly assigning
each of the 20 amino acids to one of these sets. All three
stop codons remain invariant, in position for all
alternative codes.
3.
 The first or the second bases are always kept invariant in
order to limit the space of possible variant codes.

This method creates random codes that are positioned
relatively near the canonical genetic code in the space of all
possible codes and might have been accessed by evolution
in terms of small gradual mutations. In the classic method,
the codon boxes are fixed and the amino acids are
permutated in these fixed positions; yet, in the degenerate
method the codon boxes are variable as well and the
number of synonymous codons in each box is subject to
change Goodarzi et al., 2005c).
In this study, based on two reasons we have used

z-scores instead of the empirical p-values: (i) the distribu-
tion of fitness scores are significantly normal (data not
shown), and (ii) some of the searches returned 0 better
codes that made such studies incomparable if p-values were
used. The definition of z-score is as follows:

z ¼
jgc �mean

sde
, (3)

where jgc is the fitness score of the canonical genetic code
and mean and standard deviation values are determined by
generating a defined number of random codes (105–109 in
this study).
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2.3. Code-reflecting matrices

After choosing proper values as a and b in Eq. (2), the
SCV matrix would be complete; yet, the possibility of the
contamination with the properties of the canonical genetic
code should be addressed for this matrix. In order to study
the proposition that this matrix is or is not biased towards
the genetic code, a regression analysis has been used to
compare this matrix to the matrices that reflect the
structure of the canonical genetic code (as in Di Giulio,
2001).

In this part of our study, two substitution matrices were
used that are deemed to be obtained from the structure of
the canonical genetic code itself:
1.
 Angle measurement: Introduced in 1989 by Di Giulio,
this matrix measures the angle between the 20 amino
acid vectors in the 21-dimension space of the canonical
genetic code. As reported by Di Giulio (1989) himself,
this matrix highlights the role of polar character and size
of amino acids in the evolutionary history of the genetic
code.
2.
 CRM (code-reflecting matrix): In addition to angle
measurement, we have also devised CRM based on the
structure of the canonical genetic code. This matrix is
obtained from the probabilities of mistranslations
between the amino acids (applying the weightings and
biases theoretically chosen by Freeland and Hurst
(1998) for mistranslations):

CRM ai; aj

� �
¼
X
cðaiÞ

X
cðaj Þ

p c0 cjð Þ. (4)

In case CRM(ai, aj) ¼ 0:

CRM ai; aj

� �
¼ �Maxvalue ai; akð Þ, (5)

where Maxvalue(a, b) returns the greatest of a and b.

The results of the Mantel tests between these two
matrices and the SCV matrix are compared with those of
other cost measure matrices, both contaminated and
uncontaminated, in order to comment on the genuineness
of the SCV matrix. All these regressions were performed
between matrices of 190 points, i.e. excluding the diagonal
elements of these matrices. In the matrices of the polarity
distances of amino acids, every component represents the
absolute value of the difference between the value of the
polarity of the ith amino acid and that of the jth one.

2.4. SCV matrix vs. other amino acid indices

We also made a comparison between the SCV matrix
and other amino acid cost measure indices available. To
this end, 516 amino acid indices were downloaded
(available online at www.genome.ad.jp/dbget/aaindex.
html) and were compared to the SCV matrix. Regression
analysis between matrices of 190 points of these amino
acids indices and the SCV matrix was performed and the
eight indices that showed an R-value of greater than 0.75
were identified.
In the next step, z-scores were calculated for each of

these 516 amino acid indices as cost measure functions by
generating 107 randomly generated codes (the classic
method):

g a; a0ð Þ ¼ h að Þ � h a0ð Þ
�� ��, (6)

where h(a) returns the corresponding index of amino acid
a.
The computed z-scores were then compared to the

z-score of the SCV matrix to study the load minimization
capacity of the canonical genetic code and the robustness
of the SCV matrix to highlight such optimality.

2.5. The ability of the SCV matrix in protein alignment

As described above, the SCV matrix is derived as a linear
function of three amino acid properties with chosen
parameters; yet, it should be proven that this matrix
actually reflects the distances between amino acids. To this
end, we tried to compare the SCV matrix to other amino
acid substitution matrices based on scoring matrices
comparison methods which test the capability of scoring
matrices to discriminate protein families through alignment
(Henikoff and Henikoff, 1993). When using a scoring
matrix based on the distance values (e.g. SCV), one should
consider some necessities on the scoring matrices used in
sequence alignment algorithms. For measuring the simi-
larity between two sequences using alignment algorithms,
the scoring matrix has to consist of a log-odd discrimina-
tion measure of amino acids; otherwise, the score of the
‘‘best’’ alignment between two sequences could not bear
any meaningful concept about their ‘‘similarity’’. Another
essential property of a scoring matrix used in local
alignment algorithms is that the expected value of the
scores obtained from aligning every two ‘‘random’’
subsequences should be less than zero (see Altschul,
1991). By applying a negative exponential function on
values of SCV matrix, they are transformed to a form of
two-variable distribution function:

f ða; a0Þ ¼ e�l:gða;a
0Þ, (7)

where g(a, a0) denotes the SCV measure between amino
acids a and a0 Eq. (2). l is a constant, set to 12 for SCV and
3 for Polar Requirement, chosen to satisfy the constraints
of a scoring matrix suitable for local alignments.
Log-odds are calculated from this distribution as

‘‘expected’’, and the relative frequency of individual amino
acids in Swissprot database (http://tw.expasy.ch/sprot/
relnotes/relstat.html) as ‘‘random’’ models, respectively:

scða; a0Þ ¼ log 2
f ða; a0Þ

r:qa:qa0

� �
, (8)

http://www.genome.ad.jp/dbget/aaindex.html
http://www.genome.ad.jp/dbget/aaindex.html
http://tw.expasy.ch/sprot/relnotes/relstat.html
http://tw.expasy.ch/sprot/relnotes/relstat.html
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where qa is the relative frequency of amino acid a and r is
calculated from

r ¼

P
a;a0 f ða; a

0Þ

20
P

aqa

. (9)

Briefly, our goal has been to apply r as a shift value in order
to make a negative expected score in alignments and
subsequently choose l such that f(a, a0) satisfies the
probability density function as much as possible. Note
that, in the last step all the elements are rounded to the
nearest integer.

In order to compare the efficiency of SCV as a
substitution-scoring matrix against other conventional
scoring matrices regarding protein alignment, we have
studied the ability of discrimination between protein
families by utilizing local sequence alignment algorithm
on some pairs of ‘‘representative’’ sequences of families.
The idea of this simple analysis is the same as Henikoff and
Henikoff (1993) with the exception of some slight
differences in choosing the protein family database.

It implies the three following steps:
1.
 Choosing the representative members for each family.

2.
 Selecting the ‘‘hard-to-discriminate’’ families.

3.
Table 2

z-Values calculated for incremental values of a and b by generating 107

randomly generated codes (degenerate method)

a b

0 0.25 0.5 0.75 1

0 �6.72744 �6.98423 �7.08071 �7.06041 �6.966

0.063 �6.74819 �7.00255 �7.10084 �7.08434 �6.99402

0.125 �6.75709 �7.00963 �7.11062 �7.09898 �7.01383

0.188 �6.75561 �7.00675 �7.11124 �7.10545 �7.02654

0.25 �6.74496 �6.99508 �7.10355 �7.10423 �7.03226

0.313 �6.72597 �6.97528 �7.08818 �7.09597 �7.03169
Measuring the power of the scoring matrix to discrimi-
nate between these families.

For the first step, we imagine that members of each
family share a phylogenetic tree. By the assumption that
the distance between each pair on the tree is proportional
to the inverse of the alignment score on them, one can find
out the furthest two members of a family by a conventional
algorithm in graph theory used to find the diameter of a
tree. The algorithm would compute the greatest distance in
the family provided that the distance function obeys a line
distance condition, i.e. if x is between y and z then
dist(x, y)+dist(x, z) equals to dist(y, z). Although this
property is not necessarily true on the score of local
sequence alignment as a distance, we accept it as a heuristic
approach. Besides these two members, we chose another
protein as the ‘‘center’’ of the family to point to the
sequence that has the most likely alignment with both
‘‘furthest’’ members. In other words, the alignment score of
the ‘‘center’’ and one of ‘‘furthest’’ members is as near as
possible to the alignment score of the ‘‘center’’ and the
other one. By adding the longest sequence of the family up
to the sequences described above, we introduce four
representatives of each family. At this step, we used the
6/�1 identity matrix for alignments.

Among these protein families, those that their represen-
tatives appear to be more similar to other families
(determined by the corresponding alignments) are called
‘‘hard-to-discriminate’’. As discussed in Bastien et al.
(2004) considering z-score rather than conventional
E-value for measuring protein relationships could lead to
a more reliable conclusion when statistical requirements
to an E-value analysis are not clearly given. So to
determine such families, all pairwise alignments between
families’ representatives were computed. Then 120 most
similar sequences with this representative were screened for
each family. z-Score of the family’s representative out of
these 120 samples of alignment scores approximately
makes a sense on ‘‘hard-to-discrimination’’ wherever the
z-score is small (for instance less than 10).
We applied all the pairwise alignments between each

family’s representative and all other proteins in the same
family. Consider a representative of a family, for instance
‘‘center’’ protein and do its pairwise alignment with all
other sequences of the family. Now the difference of the
highest and lowest alignment z-score could estimate a
measure for the firmness of the family. Formerly by
computing all pairwise alignments scores between the
family’s representative and representatives of other
families, a set of random samples that is necessary for
calculating z-score, was provided. Scoring matrices to be
comprised are BLOSUM65, BLOSUM50, PAM250,
PAM50, SCV and Polar requirement derived scoring
matrices. The 6/�1 identity matrix also was applied as an
inefficient-assumed testifier.
For this part of the study, Pfam-A (ver. 18 release 23

July 2005) (Finn et al., 2006), was used for extracting
proteins the sequences of which are later provided by
Swissprot (release 48.5 September 2005) (Bairoch et al.,
2004). Consequently, 33 813 proteins were obtained; each
of which belongs to one or more of 7973 families.

3. Results

3.1. Choosing appropriate values for a and b

Generating 105 random codes (the degenerate method),
z-scores were calculated for jfaa applying SCV matrix
(constructed by incremental values of a and b) as the cost
measure function. The results are tabulated in Table 2,
where a z-score is reported for every a and b. The value
�7.111 was apparently the minimal z-score and the
corresponding a ¼ 0.5 and b ¼ 0.188 values of this z-score
were chosen to construct the final SCV matrix.
Applying the abovementioned a and b values in Eq. (2),

the SCV matrix was constructed which is basically a
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Table 3

The SCV amino acid substitution matrix

A R N D C Q E G H I L K M F P S T W Y V

A 0.00

R 0.72 0.00

N 0.53 0.19 0.00

D 0.74 0.21 0.21 0.00

C 0.28 0.87 0.68 0.87 0.00

Q 0.84 0.34 0.31 0.35 0.82 0.00

E 0.95 0.42 0.43 0.21 0.94 0.32 0.00

G 0.42 0.60 0.41 0.60 0.41 0.41 0.57 0.00

H 0.67 0.52 0.51 0.70 0.66 0.36 0.68 0.24 0.00

I 0.27 0.98 0.79 1.01 0.28 1.10 1.22 0.69 0.93 0.00

L 0.32 0.90 0.71 0.90 0.11 0.94 1.06 0.53 0.77 0.16 0.00

K 0.98 0.26 0.45 0.42 0.99 0.47 0.34 0.72 0.64 1.24 1.08 0.00

M 0.32 0.90 0.71 0.90 0.10 0.73 0.87 0.32 0.56 0.37 0.21 1.02 0.00

F 0.27 0.86 0.67 0.89 0.16 0.98 1.10 0.57 0.81 0.12 0.05 1.12 0.25 0.00

P 0.61 0.44 0.25 0.44 0.60 0.23 0.41 0.19 0.27 0.88 0.71 0.56 0.50 0.76 0.00

S 0.45 0.44 0.25 0.44 0.44 0.39 0.50 0.16 0.27 0.72 0.55 0.56 0.46 0.60 0.16 0.00

T 0.50 0.56 0.37 0.56 0.49 0.33 0.53 0.08 0.16 0.77 0.61 0.68 0.40 0.65 0.12 0.12 0.00

W 0.25 0.97 0.78 1.00 0.27 1.09 1.21 0.68 0.92 0.22 0.29 1.23 0.36 0.25 0.87 0.70 0.76 0.00

Y 0.06 0.68 0.49 0.71 0.22 0.80 0.92 0.39 0.63 0.30 0.26 0.94 0.26 0.21 0.58 0.41 0.47 0.29 0.00
V 0.59 1.17 0.98 1.17 0.30 0.82 1.14 0.57 0.65 0.45 0.29 1.29 0.26 0.33 0.73 0.73 0.60 0.56 0.52 0.00

Table 4

Pairwise regression analyses driven to study the possible bias of the SCV

matrix towards the canonical genetic code

Cost measure matrix Angle measurement Code-reflecting matrix

SCV matrix 0.0573 (5� 10�4) 0.0215 (2� 10�2)

Polar requirement 0.0884 (1� 10�4) 0.0442 (3� 10�3)

Hydropathic char. 0.0475 (1� 10�3) 0.0263 (2� 10�2)

PAM74�100 0.2265 (1� 10�4) 0.1217 (1� 10�4)

Mutation matrix 0.0313 (8� 10�3) 0.0529 (1� 10�3)

Hydrophobicity scale 1 0.0164 (4� 10�2) 0.0006 (3� 10�1)

Hydrophobicity scale 2 0.0770 (3� 10�4) 0.0702 (4� 10�4)

The p-values computed from Mantel test are provided in parentheses.

The corresponding R-values of the SCV matrix are comparable to other

unbiased matrices, suggesting the uncontaminated nature of this matrix.
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Fig. 1. Correlation coefficients calculated from comparing the SCV

matrix with 516 amino acid matrices.
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distance matrix. As presented in Table 3, the SCV matrix is
a symmetrical one where the cost of substitution for each
amino acid pair has a positive value.

3.2. Analyzing the correlation between the SCV matrix and

the CRMs

As previously mentioned, two code-reflecting matrices,
namely the angle measurement and the CRM, were used to
study the possible contamination of the SCV matrix with
the structure of the canonical genetic code. The correlation
coefficients for each of the pairwise regressions between
each of the cost measure matrices and the two code-
reflecting matrices are tabulated in Table 4. The p-values
obtained from Mantel test are also provided. The Mantel
test was performed by zt software (Bonnet and Van de
Peer, 2002). The R2-values are calculated for the SCV
matrix, a number of polarity measurements (Polar
requirement [Woese et al., 1966], Hydrophobicity scale #1
[Nozaki and Tanford, 1971], Hydrophobicity scale #2
[Engelman et al., 1986], and Hydropathic character [Kyte
and Doolittle, 1982]), and PAM74–100 that is previously
discussed to be biased towards the canonical genetic code
(Di Giulio, 2001). With the exception of Hydrophobicity
scale #1, the reported p-values (o0.05) corroborate the
reliability of the obtained R2-values.

3.3. Correlating the SCV matrix with various amino acid

indices

Fig. 1, indicates the correlation coefficients (R) obtained
from correlating the SCV matrix with 516 other cost
measure matrices derived from 516 amino acid indices. R-
Values are ranged from �0.2 to +0.8 and 62 percent of
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these indices show positive correlation with the SCV matrix
(38 percent have an R-value greater than +0.2). Those
indices that show more than 0.75 correlation with the SCV
matrix were identified and tabulated in Table 5.

In the next step, the SCV matrix was compared to these
516 amino acid indices regarding the error-buffering
capacity of the canonical genetic code. The calculated
z-scores for each of these indices (generating 108 random
codes from the classic method) are presented as a
histogram in Fig. 2 where the corresponding z-score
for the SCV matrix is indicated by an arrow
(z-score ¼ �2.130). As it can be inferred from the data,
none of these indices acted as efficiently as the SCV matrix
in revealing the load minimization characteristic of the
canonical genetic code.
0
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Fig. 2. z-scores calculated for each of the 516 amino acid indices as well as

the SCV matrix (indicated by an arrow) generating 108 random codes

(classic method).
3.4. Results from alignment

By choosing proper values for the parameter of negative
exponential function and some other parameters to scale
and shift values of the scoring matrix we derived a scoring
matrix from SCV matrix satisfies the requirements for local
sequence alignments mentioned in Section 2.5 (Tables 6
and 7). Among the 7973 protein families, 328 were screened
as ‘‘hard-to-discriminate’’.

Pair-wise sequence alignments were performed between
the families’ representatives and the corresponding z-scores
were calculated for each family. We did this process seven
by four times, each time with a different representative or a
different scoring matrix. The number of families among
these 328 with lowest z-score of greater than 4 is
summarized in Table 8. The difference between the highest
z-score and the lowest z-score obtained for each family is
also presented as another measure for protein family
firmness which is also informative about the efficiency of
scoring matrices that are shown in Table 9. Based on the
data tabulated in these two tables, the ‘‘center’’ represen-
tative poses a better delegation for protein families, which
is independent of the applied substitution matrix.

These comparisons that are based on previously intro-
duced methods for comparing the scoring matrices
(see Henikoff and Henikoff, 1993), highlight the ability of
SCV-derived scoring matrix in protein family discrimination
Table 5

The top eight amino acid indices that show more than 0.75 correlation with t

Amino acid index

Hydropathy scale based on self-information values in the two-state model (9%

Information value for accessibility; average fraction (23%)

Polarity

Hydropathy scale based on self-information values in the two-state model (16

Information value for accessibility; average fraction (35%)

Hydrophobic parameter pi

Mean fractional area loss

14 A contact number
which is comparable to that of PAM50 (Table 8 and
Table 9). In detail, we ranked the ability of the scoring
matrices in discriminating protein families based the results
depicted in Tables 8 and 9: PAM250, BLOSUM50,
BLOUM65, SCV-derived, PAM50, POLAR-req, 6/�1
Identity; where the leftmost shows the best ability on
protein alignment and protein family discrimination in our
experience. In terms of alignment, the SCV matrix contains
a considerable level of information.

4. Discussion and conclusion

4.1. Solvent accessibility

Table 10 depicts the percentage of exposure of each
amino acid (Chen et al., 2004) along with other amino acid
indices, namely Polar requirement (Woese et al., 1966),
Hydrophobicity scale of Nozaki (Nozaki and Tanford,
1971), Hydrophobicity scale of Engelman (Engelman et al.,
1986), and Hydropathic character (Kyte and Doolittle,
1982). We have chosen the solvent accessibility of amino
acids to derive a cost measure matrix due to the fact that this
property models the impacts of mutations on the structure
of proteins more effectively. Solvent accessibility index very
much resembles the measurements of hydrophobocity
and polarity (considering the correlation coefficients in
he SCV matrix accompanied by their corresponding references

Reference

) Naderi-Manesh et al. (2001)

Biou et al. (1988)

Grantham (1974)

%) Naderi-Manesh et al. (2001)

Biou et al. (1988)

Fauchere and Pliska (1983)

Rose et al. (1985)

Nishikawa-Ooi (1986)
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Table 6

SCV-derived scoring matrix for alignment

A R N D C Q E G H I L K M F P S T W Y V B Z X

A 7 �5 �1 �5 4 �7 �9 0 �3 3 1 �10 3 3 �3 �1 �1 5 7 �3 �2 �8 �5

R �5 8 5 4 �5 2 0 �3 0 �9 �8 3 �6 �7 1 0 �2 �7 �3 �13 5 1 �5

N �1 5 9 5 �2 3 1 1 1 �6 �5 0 �3 �3 4 4 2 �3 1 �9 8 2 �6

D �5 4 5 8 �5 2 4 �3 �3 �10 �9 0 �6 �7 1 0 �2 �7 �3 �13 7 4 �5

C 4 �5 �2 �5 12 �4 �7 2 0 5 7 �7 9 7 0 2 1 7 7 4 �3 �5 �7

Q �7 2 3 2 �4 9 3 1 3 �11 �9 0 �3 �8 5 1 3 �8 �5 �6 3 7 �5

E �9 0 1 4 �7 3 7 �3 �3 �14 �11 2 �6 �11 1 �1 �2 �11 �7 �12 3 7 �5

G 0 �3 1 �3 2 1 �3 7 5 �5 �2 �5 3 �2 4 4 6 �2 2 �3 0 0 �5

H �3 0 1 �3 0 3 �3 5 10 �7 �5 �2 1 �5 5 4 6 �5 �1 �2 0 2 �6

I 3 �9 �6 �10 5 �11 �14 �5 �7 8 4 �14 2 6 �7 �5 �6 6 3 0 �7 �12 �5

L 1 �8 �5 �9 7 �9 �11 �2 �5 4 6 �12 5 7 �5 �3 �3 4 3 2 �6 �10 �5

K �10 3 0 0 �7 0 2 �5 �2 �14 �12 8 �9 �11 �2 �2 �4 �11 �8 �15 0 1 �5

M 3 �6 �3 �6 9 �3 �6 3 1 2 5 �9 10 5 1 1 2 5 5 4 �4 �4 �7

F 3 �7 �3 �7 7 �8 �11 �2 �5 6 7 �11 5 9 �5 �2 �3 6 6 2 �4 �9 �6

P �3 1 4 1 0 5 1 4 5 �7 �5 �2 1 �5 8 5 6 �5 �1 �5 3 3 �6

S �1 0 4 0 2 1 �1 4 4 �5 �3 �2 1 �2 5 7 5 �2 1 �5 3 0 �5

T �1 �2 2 �2 1 3 �2 6 6 �6 �3 �4 2 �3 6 5 8 �3 1 �3 1 1 �6

W 5 �7 �3 �7 7 �8 �11 �2 �5 6 4 �11 5 6 �5 �2 �3 12 6 0 �4 �9 �7

Y 7 �3 1 �3 7 �5 �7 2 �1 3 3 �8 5 6 �1 1 1 6 10 �1 �1 �6 �6

V �3 �13 �9 �13 4 �6 �12 �3 �2 0 2 �15 4 2 �5 �5 �3 0 �1 7 �10 �8 �5

B �2 5 8 7 �3 3 3 0 0 �7 �6 0 �4 �4 3 3 1 �4 �1 �10 7 3 �5

Z �8 1 2 4 �5 7 7 0 2 �12 �10 1 �4 �9 3 0 1 �9 �6 �8 3 7 �5

X �5 �5 �6 �5 �7 �5 �5 �5 �6 �5 �5 �5 �7 �6 �6 �5 �6 �7 �6 �5 �5 �5 �6

Table 7

Scoring matrix for alignment based on polar requirement

A R N D C Q E G H I L K M F P S T W Y V B Z X

A 7 �2 �5 �19 0 �16 �17 3 3 �2 �3 �6 1 �1 6 5 6 2 1 1 �6 �16 �5

R �2 8 4 �9 �9 �6 �7 2 6 �10 �11 3 �7 �9 �3 1 �3 �7 �7 �8 3 �7 �5

N �5 4 9 �5 �12 �2 �3 �1 3 �14 �15 8 �11 �13 �6 �3 �6 �10 �11 �11 7 �3 �6

D �19 �9 �5 8 �26 6 5 �14 �11 �27 �28 �5 �24 �26 �20 �16 �20 �24 �24 �24 7 6 �5

C 0 �9 �12 �26 12 �23 �24 �4 �5 9 8 �13 9 9 2 �2 2 10 8 6 �14 �24 �8

Q �16 �6 �2 6 �23 9 8 �12 �8 �25 �25 �2 �22 �24 �17 �14 �17 �21 �22 �22 5 8 �6

E �17 �7 �3 5 �24 8 7 �13 �9 �25 �26 �3 �22 �24 �18 �14 �18 �22 �22 �23 5 8 �6

G 3 2 �1 �14 �4 �12 �13 7 7 �6 �6 �2 �3 �5 2 5 2 �2 �2 �3 �2 �12 �5

H 3 6 3 �11 �5 �8 �9 7 10 �6 �7 2 �3 �5 2 5 1 �2 �3 �3 1 �9 �6

I �2 �10 �14 �27 9 �25 �25 �6 �6 8 7 �15 7 8 1 �4 0 9 6 4 �15 �25 �7

L �3 �11 �15 �28 8 �25 �26 �6 �7 7 6 �16 7 7 0 �5 0 8 6 4 �16 �26 �6

K �6 3 8 �5 �13 �2 �3 �2 2 �15 �16 8 �12 �14 �7 �4 �7 �11 �12 �12 7 �3 �5

M 1 �7 �11 �24 9 �22 �22 �3 �3 7 7 �12 10 8 4 �1 3 11 9 7 �12 �22 �8

F �1 �9 �13 �26 9 �24 �24 �5 �5 8 7 �14 8 9 2 �3 1 10 7 5 �14 �24 �7

P 6 �3 �6 �20 2 �17 �18 2 2 1 0 �7 4 2 8 4 8 4 4 3 �7 �17 �6

S 5 1 �3 �16 �2 �14 �14 5 5 �4 �5 �4 �1 �3 4 7 4 0 �1 �1 �4 �14 �5

T 6 �3 �6 �20 2 �17 �18 2 1 0 0 �7 3 1 8 4 8 4 4 3 �8 �18 �6

W 2 �7 �10 �24 10 �21 �22 �2 �2 9 8 �11 11 10 4 0 4 12 10 8 �11 �21 �9

Y 1 �7 �11 �24 8 �22 �22 �2 �3 6 6 �12 9 7 4 �1 4 10 10 8 �12 �22 �7

V 1 �8 �11 �24 6 �22 �23 �3 �3 4 4 �12 7 5 3 �1 3 8 8 7 �12 �22 �6

B �6 3 7 7 �14 5 5 �2 1 �15 �16 7 �12 �14 �7 �4 �8 �11 �12 �12 7 5 �6

Z �16 �7 �3 6 �24 8 8 �12 �9 �25 �26 �3 �22 �24 �17 �14 �18 �21 �22 �22 5 8 �6

X �5 �5 �6 �5 �8 �6 �6 �5 �6 �7 �6 �5 �8 �7 �6 �5 �6 �9 �7 �6 �6 �6 �6
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Table 10); yet, three amino acids contribute to most of the
remaining differences:
�
 Pro and Gly are considered to be non-polar residues but
the cyclic structure of Pro and the small size of Gly
permit them to be exposed in the surface (Nelson and
Cox, 2000).

�
 Cys is a polar residue but two Cys can be readily

oxidized to form a disulfide bond which is highly
hydrophobic (Chen et al., 2004).



ARTICLE IN PRESS

Table 9

Comparison of the ability of different scoring matrices in discriminating between protein families

Rep-type d-blosum65 d-blosum50 d-pam250 d-pam50 d-scv d-polar_req d-ident 6/�1

Longest 5.26 5.20 5.09 5.60 5.41 5.62 5.53

Furthest 1 5.27 5.16 5.00 5.77 5.43 5.74 5.65

Furthest 2 5.43 5.35 5.20 5.86 5.59 5.85 5.79

Center 5.40 5.29 5.12 5.92 5.56 5.90 5.81

The averages of difference between highest and lowest z-score for 328 families are tabulated.

Table 8

Comparison of the ability of different scoring matrices in discriminating between protein families. Entries show the number of families which their lowest

z-score was greater than 4 (among the 328 hard-to-discriminate families)

Rep-type fn-blosum65 fn-blosum50 Fn-pam250 fn-pam50 fn-scv fn-polar_req fn-ident 6/�1

Longest 56 55 63 51 52 49 47

Furthest 1 79 79 84 65 68 62 61

Furthest 2 66 66 78 56 58 54 51

Center 78 81 86 63 68 61 61

Table 10

Different amino acid indices and their pairwise correlation (Pearson) with the solvent accessibility index

Solvent

accessibility

Hydropathic

character

Hydrophobicity

scale #1

Hydrophobicity

scale #2

Polar

requirement

Residue

charges

Residue

volume

Phe 26.8 2.08 2.8 2.8 5.0 0 0.774

Leu 26.7 1.97 1.8 3.8 4.9 0 0.636

Ile 23.9 2.5 1.8 4.5 4.9 0 0.636

Met 33.4 2.3 1.3 1.9 5.3 0 0.613

Val 27.5 1.76 1.5 4.2 5.6 0 0.476

Ser 59.2 �0.63 �0.3 �0.8 7.5 0 0.172

Pro 64.4 �2.96 1.4 �1.6 6.6 0 0.373

Thr 57.0 �0.5 0.4 �0.7 6.6 0 0.334

Ala 40.2 0.38 0.5 1.8 7.0 0 0.17

Tyr 39.3 �0.44 2.3 �1.3 5.4 0 0.796

His 57.7 0.09 0.5 �3.2 8.4 1 0.555

Gln 74.6 �1.3 �0.2 �3.5 12.5 0 0.5

Asn 69.7 �1.21 �0.2 �3.5 10.0 0 0.344

Lys 88.0 �3.51 �3.0 �3.9 10.1 1 0.647

Asp 76.6 �1.27 �2.5 �3.5 13.0 �1 0.304

Glu 82.5 �1.88 �2.5 �3.5 12.5 �1 0.467

Cys 31.5 1.98 1.0 2.5 4.8 0 0.289

Trp 31.2 1.07 3.4 �0.9 5.2 0 1.0

Arg 75.8 �2.35 �3.0 �4.5 9.1 1 0.676

Gly 53.3 0.1 0.0 �0.4 7.9 0 0.0

R �0.92 �0.87 �0.91 �0.89 0.05 �0.26
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The solvent accessibility index is capable of reflecting
these properties whereas the other included indices fail to

do so. The solvent accessibility index is highly correlated
with other polarity-based amino acid indices and including
them in one cost measure matrix seems redundant. On the
other hand, the residue charge and the residue volume
indices show low correlations and can be considered as
independent parameters in measuring the cost of substitu-
tions. Based on these assumptions Eq. (3) was chosen to
represent the physicochemical differences between the
coding amino acids. Besides these analyses, it is fairly
expected that polarity, volume, and charge would be
independent properties and in order to evaluate the cost of
mutation they all should be considered.

4.2. SCV matrix is unbiased towards the genetic code

The performed regression analyses (as in Di Giulio,
2001) suggest the absence of contamination in the SCV
matrix as the obtained R-values are comparable to those of
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other unbiased indices. In particular, the R-values obtained
for the SCV matrix are even smaller than those of Polar
requirement which is considered to be unbiased towards
the canonical genetic code.

Apart from the SCV matrix, we have also included the
Mutation matrix devised by Gilis et al. (2001) based on the
in silico study of changes in folding free energies of many
sampled proteins. Our data suggest that Mutation matrix is
also unbiased and its use in a number of previous studies
(Gilis et al., 2001; Goodarzi et al., 2004; Goodarzi et al.,
2005a, b, c) might be justified regarding this aspect.

Use of PAM74–100 in a number of prior studies to
highlight the error-buffering nature of the genetic code
(Freeland and Hurst, 1998; Gilis et al., 2001) was criticized
based on the biased nature of PAM74–100. Thus, studies
were forced to use amino acid indices, which although
unbiased towards the genetic code, contain very limited
information compared to the high complexity of amino
acids as building blocks of proteins. Using SCV matrix for
load minimization analysis on the genetic code shows that
this matrix results in a higher optimality compared to
simple amino acid indices. Hypothetically, if we could
model the differences between amino acids perfectly,
maybe then the error-buffering nature of the code would
have been even more significant.

4.3. SCV matrix and load minimization

Whether the major selectional pressure or solely a
byproduct of the evolution of the code, ‘‘load minimiza-
tion’’ is one of the apparent characteristics of the canonical
genetic code (for review see Freeland et al., 2003; Di
Giulio, 2005). Substitution matrices such as PAM74–100

were used to elicit the extent by which this special
characteristic is non-random in the structure of the
canonical genetic code (Gilis et al., 2001, Freeland et al.,
2000); yet, Di Giulio (2001) discussed the biasness of PAM
matrices towards the canonical genetic code and criticized
its use in such studies. Although common amino acid
indices (e.g. Polar requirement) are as well capable of
eliciting load minimization in the structure of the code,
applying a more robust and yet unbiased matrix seems
crucial for quantifying the extent by which the canonical
genetic code is non-randomly structured to minimize the
effects of errors. Being a better approximation for
differences in general properties of amino acids and also
suggested to be unbiased towards the genetic code, the SCV
matrix is an acceptable candidate to serve this goal.

As previously mentioned in Section 3.3, using the SCV
matrix as a cost measure matrix results in a z-score far
smaller than any other amino acid index (biased or
unbiased). Besides, the calculated z-score of �2.13 for the
SCV matrix is the closest value to the z-score of PAM74–100

(i.e. �2.43).
Table 5, includes the amino acid indices that show more

than 0.75 correlations with the SCV matrix. All of these
indices are polarity or accessibility based, and their high
correlation might be attributed to the presence of solvent
accessibility index in the SCV matrix. Yet, none of these
indices are as efficient in revealing the error-buffering
capacity of the canonical genetic code.

4.4. Discriminating the ‘‘hard-to-discriminate’’

Regardless of the scoring matrix used, the representative
called ‘‘center’’ sounds better than the others in implicating
protein family properties. Note that in Table 8, greater
numbers mean more efficient scoring matrix, while in
Table 9, the larger the value, the more indistinguishable it
is. Both results in Tables 8 and 9 reveal similar ability for
PAM50 and SCV-derived scoring matrices; however the
latter seems a bit better. The highest ability for discrimina-
tion between protein families by PAM250 and the worst
one by 6/�1 identity matrices had been expected. These
results suggest that the SCV matrix is not just a random
combination of three indices, which accidentally reveals a
low z-score in load minimization studies. Besides, the SCV
matrix is more capable in discriminating protein families
when compared to Polar requirement which is a widely
used amino acid index.
In short, we have introduced the SCV matrix as a

distance-based matrix, which is a linear combination of
solvent accessibility, charge and molecular volume of
amino acids. Our results show that this matrix is unbiased
towards the genetic code as opposed to the frequency-
based scoring matrices (e.g. PAM matrices). On the other
hand, we have also highlighted the high information
content of this matrix through protein family discrimina-
tion comparisons with other matrices.
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