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Lattice models have been previously used to model ligand diffusion on protein surfaces. Using such
models, it has been shown that the presence of pathways (or :chreodes;) of consecutive residues with
certain properties can decrease the number of steps required for the arrival of a ligand at the active site.
In this work, we show that, based on a genetic algorithm, ligand-diffusion pathways can evolve on a
protein surface, when this surface is selected for shortening the travel length toward the active site.
Biological implications of these results are discussed.

Introduction. – All biological macromolecules are surrounded by a layer of
structured water (H2O) molecules [1]. The state of H2O molecules at protein surfaces is
fundamental to protein structure, stability, dynamics, and function.

Lattice models have been extensively used to study a variety of chemical and
biochemical interactions and reactions [2], including lateral-diffusion phenomena [3–
6]. In recent years, lattice models have been used to demonstrate that ligand-diffusion
paths or :chreodes; can decrease the number of random steps that a ligand passes to
arrive at its specific binding site [7–11]. These models generally assume i) that amino
acids are non-randomly distributed on the protein surface; ii) that, over time, the
number of H2O molecules that are bound to a residue is a function of the amino acid
hydropathy index (although the number of H2O molecules can change); iii) that, when
a ligand enters the hydration layer of a protein, there is never any back-diffusion to
bulk H2O; and iv) that a ligand can :walk; on a protein surface until it reaches its
specific binding site, the probability of its association to the adjacent residue being
proportional to the number of H2O molecules that are attached to that residue.

So far, using cellular-automata models, it has been shown that the existence of
hydrophobic pathways or :chreodes; on protein surfaces enhances the speed of ligand
passage toward the active site. In this work, we demonstrate by means of a genetic
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algorithm that hydrophobic residues tend to be arranged as pathways in our lattice
model to minimize the number of steps that a ligand passes to arrive at the active site.

Experimental. – To eliminate the effect of outliers, we decided to use median instead of mean. We
simulated the travel of a ligand toward an active site with the assumptions described in [11], with two
differences: 1) in contrast to previous works [7] [9–11], we assumed that the number of H2O molecules
are constant, proportional to the hydropathical value of each cell. Therefore, our simulations only
consider the :most probable; states for the chreodes and it is constant. 2) The observed travel lengths can
be any integer value in the range of [M,1 ], in which M is the minimum required steps for the arrival of
the ligand at the active site. Therefore, the distribution of travels is skewed to right, and hence, very long
travel lengths may be observed. It is necessary to remove these outliers before the calculation of the
average travel length [11]. In the present work, median was used as the desired statistic to describe the
properties of travel-length distributions. Median has the advantage that it is not influenced in the
presence of outliers.

Here, we wanted to investigate whether a force for the minimization of travel length can result in the
evolution of special amino acid patterns (e.g., pathways) ending in the active site. For this purpose, we
developed a genetic algorithm to change the amino acids on protein-surface models and to select for the
best proteins (i.e., with minimum travel length). The :survivors; of this criterion are the parents of the
next generation.

The pseudo-code of our program is illustrated in Fig. 1. In our program, for mutating a grid protein
surface, a cell in the grid (i.e., a residue on the protein surface) is randomly selected, and then its content
is randomly changed to an integer in the range of 0 (most hydrophilic) to 9 (most hydrophobic). For
performing a crossover, two distinct parents are selected, and then either half or a quarter of one is
replaced by its counterpart region in the second matrix.

Construction of the offspring is done by a constant crossover rate in the range of [0,1]. The original
parents (:survivors;) are also present in the next generation. The remaining members of the new
generation are then constructed by mutation. Running the genetic algorithm was continued until, for at
least G generations, no improvement in the offspring scores was found.

In the simulations, two kinds of neighborhoods were possible. By default, we used the Moore
neighborhood, in which it is assumed that all eight cells that surround a certain cell in a grid are their
neighbors. We also used the von Neumann neighborhood in some of our simulations, which assumes that
only four cells are in the neighborhood of a certain cell (i.e., its up, down, left, and right adjacent cells).

Results and Discussion. – We modeled a protein surface with an m�n grid, in which
each cell represents a residue on the protein surface. The details of pattern evolution on
these grids are explained in the Experimental in detail. Briefly, these grids were
randomly :mutated;, and the grids with minimum travel lengths were selected. The
:survived; grids were then used to construct the next generation, with replication and
new random mutations. With a certain crossover rate, these :survived; grids were
allowed to exchange one, two, or three quarter of their surfaces.

Fig. 2 shows examples of the patterns evolved by our genetic algorithm. These
patterns are evolved merely with the consideration of mutations, and without crossover
(i.e., crossover rate¼0). Note that these patterns match well with the :chreodes;
hypothesized to be present in previous studies [7] [9–11].

Fig. 3 demonstrates an example of changing the average travel length during the
generations. The standard deviation at the beginning is the highest, and generally
decreases during consequent generations; however, this decrease is not a gradual trend,
and, occasionally, the standard deviation increases in the next generations. Our
simulation guarantees that some level of randomness is kept during the run, and this
effect is observed because of this fact. In addition, during generations 7–9, changes in
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travel length decreased, but at generation 10, a new decreasing trend started. Such a
multi-step pattern is generally seen in our simulations (data not shown). This pattern
presumably shows that the population has moved toward a local minimum; however,
because of the mutations, it has the ability to overcome this local minimum and to be
continuously improved.

Fig. 4 shows that, using the crossover method, the results look a bit more
symmetrical, but are generally similar to those observed in Fig. 2. This suggests that the
application of crossover (in addition to mutation) is not required for the improvement
of the genetic-algorithm results.

Fig. 5 demonstrates the patterns evolved with the consideration of the von
Neumann neighborhood, instead of the Moore neighborhood. We used 21�21 matrices
to get more-obvious patterns. In fact, for 11�11 matrices, we had only accumulated
amorphous mutations around the active site (data not shown).
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Fig. 1. Genetic-algorithm (GA) pseudo-code used. This algorithm aims at finding protein-surface models
with patterns that minimize the travel length of a ligand over a protein surface.



Interestingly, we observed that, in most of the evolved pathways on the protein
surfaces, more-hydrophobic residues are found around the active site. This is consistent
with the assumption applied by Kier and co-workers in their modeling [9]. The
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Fig. 2. Examples of protein-surface representations evolved by our genetic algorithm without crossover. In
these simulations, the protein surface was modeled by an 11�11 grid of residues (initially filled with the
most-hydrophilic residues), and the active site was at the center of the grid. The simulations were

performed assuming the Moore neighborhood.

Fig. 3. Example of travel-length evolution during generations. In each generation of the experiments, 300
mutated 11�11 grids were constructed, and selected for minimizing the median of 300 simulated travel

lengths. Each error bar is equal to the standard deviation of 300 travel lengths. See text for details.



existence of such a pattern suggests that not only the presence of such a pathway is
important, but also the pathway performs best when it is :steep; toward the active site.

Previously, it has been reported that, at least in some proteins, there are :tunnels;
that direct the movements of ligands headed for the enzyme active site [12] [13]. We
suggest that this notion should be revisited, considering the properties of the residues
that construct the :tunnel walls;, as the composition of the walls may influence the
structure of the H2O molecules associated with the protein.

This research is, in part, supported by a grant from IPM (No. CS1385-1-02).
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Fig. 4. Examples of protein-surface representations evolved by our genetic algorithm, with a crossover rate
of 0.25. In these simulations, the protein surface was modeled by an 11�11 grid of residues (initially
filled with the most-hydrophilic residues), and the active site was at the center of the grid. The

simulations were performed assuming the Moore neighborhood.

Fig. 5. Examples of protein-surface representations evolved by our genetic algorithm, with a crossover rate
of 0.25. In these simulations, the protein surface was modeled by a 21�21 grid of residues (initially filled
with the most-hydrophilic residues), and the active site was at the center of the grid. The simulations

were performed assuming the von Neumann neighborhood.
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