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Abstract
Background: Global partitioning based on pairwise associations of SNPs has not previously been
used to define haplotype blocks within genomes. Here, we define an association index based on LD
between SNP pairs. We use the Fisher's exact test to assess the statistical significance of the LD
estimator. By this test, each SNP pair is characterized as associated, independent, or not-
statistically-significant. We set limits on the maximum acceptable proportion of independent pairs
within all blocks and search for the partitioning with maximal proportion of associated SNP pairs.
Essentially, this model is reduced to a constrained optimization problem, the solution of which is
obtained by iterating a dynamic programming algorithm.

Results: In comparison with other methods, our algorithm reports blocks of larger average size.
Nevertheless, the haplotype diversity within the blocks is captured by a small number of tagSNPs.
Resampling HapMap haplotypes under a block-based model of recombination showed that our
algorithm is robust in reproducing the same partitioning for recombinant samples. Our algorithm
performed better than previously reported models in a case-control association study aimed at
mapping a single locus trait, based on simulation results that were evaluated by a block-based
statistical test. Compared to methods of haplotype block partitioning, we performed best on
detection of recombination hotspots.

Conclusion: Our proposed method divides chromosomes into the regions within which allelic
associations of SNP pairs are maximized. This approach presents a native design for dimension
reduction in genome-wide association studies. Our results show that the pairwise allelic association
of SNPs can describe various features of genomic variation, in particular recombination hotspots.

Background
Analysis of Single Nucleotide Polymorphisms (SNPs) in
the DNA of unrelated individuals revealed a block-like
structure of haplotype variation along the human
genome. Using the first available genome-wide data of
SNPs on chromosome 21, Patil et al. [1] showed that in

particular regions on the chromosome, the observed
diversity of SNP haplotypes is less than the expected.
Almost at the same time, a similar structure in haplotypes
within a region of 103 SNPs on chromosome region 5q31
was reported by Daly et al. [2]. In the latter study, a block
structure of haplotypes was revealed using a Hidden
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Markov Model for estimating recombination rates. This
approach, unlike models based on haplotype diversity,
incorporated a quantity measuring Linkage Disequilib-
rium (LD) between pairs of SNPs.

It is well known that effects such as population bottle-
necks, geographic isolation, and natural selection can
increase the extent of linkage disequilibrium in genomes
[3]. However, in established large populations under ran-
dom mating, haplotype blocks reflect mutation events in
the ancestors of that population and recombination
events along the chromosomes. Increased frequency of
recombination events are likely to create genomic regions
with haplotype blocks of small size. Based on HapMap
data, Myers et al. [4] identified short genomic regions
within the human genome in which the recombination
rates are orders of magnitude higher than background lev-
els. Such regions are called "recombination hotspots".
Identification of hotspots of recombination and estima-
tion of rates of crossover therein are important issues [5-
7].

However, existing approaches that address these issues are
generally complicated and computationally intensive.
Haplotype blocks can rapidly provide rough estimations
about hotspots of recombination. Knowledge of haplo-
type blocks has other applications as well. The block struc-
ture of chromosomes can be used in statistical approaches
aimed at achieving better understanding of genetic fea-
tures that differentiate ethnic groups [8-10]. The phasing
problem in genotype analysis is typically solved by com-
putational methods; one can reduce the computational
cost by breaking the input genotype data into smaller
units along boundaries of haplotype blocks. As a conse-
quence, block partitioning is performed prior to phasing
and other analysis in genomic sequence-based endeavors,
including those incorporated in Haploview [11]. Simi-
larly, Zhao et al. [12] proposed the use of block partition
inside the PL-EM algorithm for the haplotype inference
problem [13], as a substitute for the common PL tech-
nique.

One of the most important applications of SNP haplotype
data is in regard to identification of disease causing genes.
State-of-the-art sequencing technologies that provide
large volume SNP data along with efficient statistical anal-
yses; have made the use of haplotype data for gene identi-
fication a realistic goal. These statistical analyses usually
incorporate time demanding reiterative tasks on large data
sets. Clearly, the reduction of data volume by making use
of haplotype blocks allows for more rapid and efficient
analyses. B. Browning and S. Browning [14] presented a
method for disease association studies based on haplo-
type blocks that relies on pairwise association between

SNPs. Other approaches in disease association studies
require samples of limited haplotype diversity [15-17].

In case-control association studies designed to identify
disease causing genes, one of two strongly associated
SNPs can be used as a "proxy" for testing association of
the trait with the other. Grouping such associated "proxy"
SNPs together compresses information to be used for
case-control studies. Many strategies have been proposed
to conduct case-control studies in an economic manner
[18-20]. The key idea shared by all these approaches is
that essentially all important information derived by anal-
ysis of association tests between each individual SNPs and
phenotype of interest can be derived by analysis of a sub-
set of SNPs, called tagSNPs. The most widely used method
for tagSNP selection has been introduced by Carlson et al.
[21]. Applying a threshold on r2, in each iteration of Carl-
son's method, the SNP included in the largest number of
associated pairs is selected as a tagSNP.

Another common approach is in identification of haplo-
type-tagging SNPs (htSNPs). Here, the goal is to find the
smallest subset of the SNPs (htSNPs) such that any single
nucleotide difference between any two distinct haplotypes
can be captured by an htSNP. Ding et al. [22] have shown
that htSNP selection is notably effected by the manner in
which haplotype blocks are defined. Zhang et al. [23] have
incorporated several criteria for "candidate block" identi-
fication into their dynamic programming algorithm for
finding the minimum number of htSNPs in an entire
chromosome. While there are different criteria to limit
regions of the genome as "potential blocks", most of them
can be classified as measures of haplotype frequency or
measures of SNP pair association (see Table 1). These two
measures may seem equivalent at first sight, but in fact
they quantify different features of the data. For example,
"common haplotypes" feature haplotype frequencies,
whereas |D'| quantifies allelic association of SNP pairs. In
theory, and even in practice, it is possible that values of
these two measures derived from the same data will define
different haplotype blocks [24]. However, the extent to
which haplotype diversity is captured when blocks are
defined on the basis of association of SNP pairs remains
to be established.

In this work, we discuss on a haplotype block partitioning
that is based on pairwise association of SNPs. There are
several statistics for determining allelic correlation
between SNPs. Two well known statistics are D and r2

which, respectively, represent the sample covariance and
the sample correlation coefficient of two bi-allelic mark-
ers. Theoretical distributions of these statistics have been
well studied. For instance, it is known that nr2 is asymptot-
ically chi-squared [25], where n is the sample size. These
two statistics depend on marginal frequencies of two
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SNPs. D', a third measure of linkage disequilibrium intro-
duced by Lewontin [25], is preferred by some researchers.
D' is a normalized statistic with respect to marginal fre-
quencies and varies linearly between 0 and 1 as a function
of the forth gamete frequency.

In fact, although the point estimate of D' is independent
of sample size, its distribution under the hypothesis of
independence is a function of sample size. To measure the
significance of D', Gabriel et al. [26] suggested the use of
an interval estimate. Here, we suggest that p-values as
derived from the Fischer's exact test be used to assess the
significance of D'. With respect to disease association
studies, wherein this test is used to assess phenotype-SNP
association, it seems reasonable to use the same test for
SNP-SNP association.

Haplotype blocks can alternatively produce "local parti-
tioning" and "global partitioning". In local partitioning,
haplotype blocks are defined independently from the con-
figuration of other haplotype blocks through the genome.
Usually non-contiguous blocks are produced that look
like a series of "islands" within the genome. In contrast, in
global partitioning, the aim is to split the genome into
haplotype blocks; the entire genome is "tiled" meaning all
regions of the genome are within a block. Here, no single
definition is applicable to all the blocks. To the best of our
knowledge, little effort has been made to incorporate a
pairwise measure of SNPs into a global block partitioning
method.

In an earlier effort to discuss how well LD patterns are
consistent with block boundaries, Wall and Pritchard
have evaluated three measures, namely "coverage",
"absence of holes", and "non-overlapping blocks" [27].

"Coverage" refers to the portion of each chromosome
which is covered by haplotype blocks. Two haplotype
blocks overlap if their boundaries cross each other. A
"hole" in a haplotype block occurs where a SNP is not in
strong LD with any of other SNPs in the block. These fea-
tures have been assessed only for the haplotype blocks
produced by Gabriel's method. Obviously, all global par-
titioning approaches produce non-overlapping blocks
which together completely cover the genome.

The block partitioning approach we present in this work
consists of two steps. First, an association index is derived
that characterizes each pair of SNPs as "associated", "inde-
pendent", or "not-statistically-significant". Then, haplo-
type blocks are determined such that the number of
associated SNP pairs within each block is maximized,
while a limitation is set on fraction of acceptable inde-
pendent SNP pairs. An iterating search algorithm is used
to find the solution of the constrained optimization. The
method produces global partitioning of chromosomes.
Our method results in complete coverage, no overlapping,
and "absence of holes" in blocks.

Having applied the method, we comprehensively com-
pare its performance with some previously reported meth-
ods for haplotype block designation. Robustness of each
method is assessed by evaluating the consistency of block
boundaries on permuted samples. We also assess the
potentials of block structures created by each method to
serve as a reference block structure for genome-wide dis-
ease association studies. In this regard, they are assessed
under conditions of use of different marker density.
Finally, we evaluate whether our haplotype block parti-
tioning method can be used to detect recombination
hotspots in the genome.

Table 1: Summary of haplotype block partitioning methods compared in this study.

abbr. Method Partitioning structure Block definition Block constraint Software Ref.

HOT Hotspot Local* recombination 
hotspots

none "precomputed results 
available by HapMap"

[4]

MB Minimum block 
number

Global minimum number of 
blocks

haplotype diversity HapBlock v.3 [23]

HB HapBlock Global minimizing total 
number of tagSNPs

haplotype diversity HapBlock v.3 [23]

MDL MDBlock Global minimum description 
length

haplotype diversity MDBlock v.1 [43]

GAM Four gamete test Local evidence of 
recombination

fourth gamete Haploview v.4 [44]

GAB Gabriel's method Local evidence of 
recombination

strongly associated 
SNPs

Haploview v.4 [26]

GPG GPMAP** based on 
Gabriel's index

Global maximizing associated 
SNPs

independent SNPs Haploview+GPMAP present paper

GPF GPMAP based on 
Fisher's exact Test

Global maximizing associated 
SNPs

independent SNPs Haploview+GPMAP present paper

* The approach of the original method is recognized as a local partitioning. ** Global Partitioning for Maximal Association Pairs
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Methods
Association test for SNP pairs
In this section, we discuss on the use of Fisher's exact test
on quantifying the concept of "strongly associated" SNPs.
The Fisher's exact test is a test of independence, mostly
used on 2 × 2 contingency tables [28]. Despite tests based
on r2 which are approximately assessed by chi-square dis-
tribution, Fisher's exact test provides an exact probability
of rejecting the null hypothesis (test of independence),
observing the samples. There are many concrete applica-
tions of Fisher's exact test and its related statistics in
molecular biology and genetics [29,30].

Assume that n samples of L bi-allelic sites are available.
We assign a 0/1 random variable to each SNP.

Let (Xi, Xj) be the joint random variables denoting SNP
pair (i, j). The statistic of Fisher's exact test is defined by

where nab is the number of outcomes of ab for XiXj, n1· =
n10 + n11 and n·1 = n01 + n11. In this context, it can be sim-
ply shown that Fex depends only on n11, n1· and n·1; i.e. Fex
= Fex(n11; n1·, n·1).

We apply one-tailed p-value with mid-p correction to
measure the significance of independence tests [31,32].
To do so, we separate the probability space of the null
hypothesis into two subspaces of positively and negatively
co-varying samples which correspond to D > 0 and D < 0,
respectively. The one-tailed p-value subjected to this
assumption can be defined by

where nmax= argmaxi Fex(i; n1·, n·1) and corresponds to the
most balanced contingency table in which the sign of D
changes.

We speed up the computation of p-value of association
tests by establishing a table of precomputed p-values for
every triple (n1·, n·1, n11), for each n1· = 1,..., Nn/2Q, n·1 =

1,..., n1·, and n11 = 1,..., n·1. By table look-up and taking
the symmetry into account, p-values of association tests of
all SNP pairs in the genomic region of interest are
obtained.

Characterizing SNP pairs based on association test

Obviously, the significance increases when the size of
sample is increased. In other words, when the sample size
is increased then interval estimates become shorter as the
p-value becomes smaller. Taking these into consideration,
we classify all SNP pairs into three classes; "associated",
"independent", and "not-statistically-significant". For

given predetermined  and p0 we define those pairs

with |D'| <  as independent and other pairs as associ-

ated but if |D'| >  and p-valone-tailed > p0, simultane-

ously, we count a not-statistically-significant SNP pair.

 is the least value of all |D'| for which SNP pairs could

be assumed as associated and p0 is the level of significance

of the test of independence. Choosing the proper value for

 essentially depends on genetic features of population.

However, choosing a stringent cut-off for p-valone-tailed

makes the choice of  less strict.  = 0.8 and p0 = 0.01

are our default setting for these thresholds.

Maximizing associated SNP pairs subject to 
limited independent pairs
Given haplotype samples, all pairs of SNPs are classified
as associated, independent, and not-statistically-signifi-
cant pairs in the whole region. It is usually convenient to
avoid extra computation by setting a maximum physical
distance above which no linkage is assumed between
SNPs. For instance, markers 500 kb from each other are
usually assumed independent by some researchers.
Toward an objective definition for haplotype blocks, we
assume that in a population away from genetic drift, selec-
tion force, and migration, a haplotype block eventually
determines two boundaries on the genome within which
every SNP pair is in "association". A similar idea has been
recently considered by Pattaro et al. [33], though in their
own approach, a likelihood model for the LD pattern in
haplotype blocks is introduced in which two distinct dis-
tributions model independent and associated SNPs, sepa-
rately.

Many SNP pairs may be identified as independent pairs in
a block, basically because not all existing variations are
available and the limited samples from the population
haplotypes may not be adequate to estimate the real situ-
ation. Therefore, we model the problem as finding a block
partitioning such that the most possible number of asso-
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ciated SNP pairs are included in blocks while independent
SNP pairs within blocks are kept limited.

Like other multi-objective problems, there is a trade-off
between achieving blocks including maximum associated
SNP pairs and blocks with minimum independent SNP
pairs. The former suggests haplotypes as large as whole
chromosome while the latter results in single SNP blocks.
To address this issue, we model the problem using a con-
strained optimization in which both objectives are
involved. Formally, we define the problem as,

where A[a, b] and B[a, b] are the numbers of independent
and associated SNP pairs in the genome segment between
SNP a and SNP b, respectively. The maximization is taken
over all partitioning sets such that 0 = s0 <s1 < � <sk = L are
(unknown) indices of SNPs at left edges of (unknown) k
blocks. Nind is the number of independent SNP pairs in
entire genomic region and α is an arbitrary constant
between zero and one that denotes the largest tolerable
fraction of independent pairs in blocks.

To solve the proposed problem, we convert the con-
strained optimization problem to an unconstrained prob-
lem by using a Lagrange multiplier, as follows,

Where λ is an unknown real positive parameter associated
with α. Given a fixed value for the Lagrange multiplier, the
reduced problem can be solved by a conventional
dynamic programming approach as,

where S(i; d) = B[i - d + 1, i] - λA[i - d + 1, i] is the score of
the genomic interval ending at SNP i and consisting of d
SNPs and Sopt(i) is the score of optimum block partition-
ing for i leading SNPs. Arbitrarily, the maximum number
of SNPs within a block can be set to w. To obtain a proper
value for Lagrange multiplier, we apply a binary search
procedure in which reduced problem with respect to dif-
ferent values for λ is iteratively solved until the desired
constraint on the number of independent SNP pairs
within blocks is satisfied. In general, increasing λ
decreases the sum of independent SNP pairs included in

blocks. In our experience and when α = 0.01, the Lagrange
multiplier is obtained by about 10 iterations.

An alternative algorithm based on Gabriel's index
In fact, our approach can be applied to improve any
method that introduces haplotype blocks based on some
pairwise index for SNPs. For instance, Gabriel's method
[26] also introduces a three state index for SNP pairs based
on the confidence interval of D'. None of the previous
methods in this category incorporates any global optimi-
zation on block partitioning.

We have developed other haplotype block partitioning
using the above optimization scheme substituting the
Gabriel's index as SNP pair characterization. Both varie-
ties of our method, one based on the association index
derived from the Fisher's exact test and the other based on
Gabriel's index have been incorporated in our extension
to the open source widely accessed software, Haploview
ver. 4. The software is running under JAVA and is publicly
available via http://bioinf.cs.ipm.ac.ir/gpmap.

To deal with unphased genotype data, our method is
assisted by the "two loci genotypes" phasing approach as
implemented by [11] in Haploview. This approach is a
simplified EM algorithm to infer frequencies of four pos-
sible alleles on two loci. Detailed formulas for this pre-
processing can be found in [12].

Method Comparison
We compare our proposed algorithm with other methods
of haplotype block partitioning based on some descriptive
aspects of haplotype blocks, performance on a block-
based case-control study, and detecting recombination
hotspots. In addition to the new methods introduced in
the present paper, we choose six other available haplotype
block partitioning algorithms. Table 1 summarizes the
main features of these methods in our trial.

In Table 1, HOT is an exception. It has been developed as
a method for inferring recombination "hotspots"
throughout the human genome. However, a region
between two consecutive hotspots can also be considered
a haplotype block because the recombination level in the
region is relatively low. In addition, comparison between
other methods and HOT may suggest clues on extending
application of block partitioning methods to recombina-
tion hotspot detection.

There is another method, MB, which has not been explic-
itly introduced in the literature. It is a special option in the
HapBlock software in which for each block, exactly one
tagSNP is assumed. Therefore, this algorithm finds the
least possible number of haplotype blocks covering the
genome while satisfying the haplotype diversity criterion.
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General aspects of haplotype block partitioning
Our first study concerns examining some general aspects
of haplotype blocks in a real sample of haplotypes. We
obtained the haplotype sample of the CEU population
from HapMap database, release 22, on ten ENCODE
regions. Through the HapMap Project [34], dense geno-
type data for ENCODE regions have been published.
These ten regions have been selected by the Encyclopedia
of DNA Elements Project [35] as the pilot phase to iden-
tify the functional elements of human genome. Table 2,
adapted from the HapMap website, summarizes the
genomic information of ten ENCODE regions and the
number of assayed SNPs in CEU panel by HapMap.

There are about 2000 SNPs assayed in each ENCODE
region in the CEU panel. However, we reduced SNPs to
those which are commonly ascertained for all three Hap-
Map panels, CEU, YRI, and JPT+CHB. Moreover, for each
region, we drew out the top 400 SNPs ordered by hetero-
zygosity out of the whole region. To do so, we divided the
region of interest into 20 equal-length subintervals and
then for each one, we picked the 20 most heterozygous
SNPs from the SNPs shared in all panels. Therefore, a
nearly uniform distribution of the most "informative"
SNPs was obtained. This preliminary reduction was neces-
sary for some of the block partitioning methods, as they
can not achieve the result for a huge sample size in a rea-
sonable time. We apply all methods of Table 1 for block
partitioning to these data. In our study, we first examine
the resulting haplotype blocks for haplotype diversity and
htSNP coverage.

To measure haplotype diversity, we apply a clustering
approach that is a simple generalization of the commonly
used definition of "common haplotypes" introduced by
Patil et al. [1]. For each block, we group haplotypes into
the same cluster such that every two members differ in at
most four percent of SNPs. This fine, yet nonzero toler-
ance, resolves the ill effects of random noises and/or

wrongly-assayed SNPs in estimation of the haplotype
diversity in long length blocks. The clusters with six or
more haplotypes are considered as non-occasional clus-
ters and indicate significant polymorphisms in the popu-
lation. By common haplotype coverage, we mean the
fraction of whole sample which belongs to any non-occa-
sional cluster.

The consistency of haplotype blocks with the pattern of
LD would be also appealing. Intuitively, a hole in a hap-
lotype block is where an SNP has no significant associa-
tion with other SNPs of the same block [27]. In a similar
way, we call cases of SNPs that are in strong association
with SNPs of other blocks islands. Precisely, we count an
SNP as a hole if its intra-block average |D'| is less than 0.8
and as an island if its inter-block average |D'| is greater
than 0.8.

It is a common question to what extent different methods
would recognize similar haplotype blocks. The usual
approach considers the sum of distances between "corre-
sponding" boundaries in two different block partition-
ings. While it seems an intuitive measure to find block
similarities but determining which boundaries are in cor-
respondness does not have a straightforward rule, because
two different partitioning configurations usually have dif-
ferent number of blocks and block boundaries might be
often far apart from each other. In such cases, we propose
another similarity measure by the following expression,

where L is the number of SNPs in the whole region, k is
the number of blocks of P1 ∪ P2, and l is the number of
SNPs in each block of the union partitioning. This meas-
ure shows the fraction of SNP pairs which are commonly
included by both P1 and P2.
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Table 2: HapMap ENCODE samples used for haplotype block partitioning.

Region name Chromosome band Genomic interval (NCBI B36) Genotyped SNPs*

ENr112 2p16.3 Chr2:51512208..52012208 2,601
ENr131 2q37.1 Chr2:234156563..234656627 2,214
ENr113 4q26 Chr4:118466103..118966103 2,538
ENm010 7p15.2 Chr7:26924045..27424045 1,830
ENm013 7q21.13 Chr7:89621624..90121624 1,770
ENm014 7q31.33 Chr7:126368183..126865324 3,343
ENr321 8q24.11 Chr8:118882220..119382220 2,128
ENr232 9q34.11 Chr9:130725122..131225122 1,909
ENr123 12q12 Chr12:38626477..39126476 2,189
ENr213 18q12.1 Chr18:23719231..24219231 1,990

Adapted from http://hapmap.org/downloads/encode1.html (retrieved on 20 Jun 2008).
* Genotyped SNPs in CEU panel.
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Robustness of block partitioning methods
A simplified explanation for existence of blocks is that
recombination events in ancestral generations predomi-
nantly occurred at block boundaries, and not within
blocks. As such, observed block boundaries may be taken
as hotspots of recombination. Based on this model, a
robust block partitioning algorithm will define the same
block boundaries whether applied to data of an ancestral
generation or to data of a recent generation. The preserva-
tion of boundaries by various block partitioning methods
can be checked by comparing the boundaries produced at
generation one and boundaries produced some genera-
tions later (Figure 1). For this purpose, 120 HapMap
9q34.11 haplotypes were followed by simulation through
ten generations, assuming crossover probability of 0.5 at
the boundaries per generation and a fixed population
size. This process was repeated 500 times for each method
and the configuration of blocks obtained in each iteration
was recorded to assess robustness of block partitioning
algorithms.

The htSNP coverage
To obtain the tagging SNPs that are required to describe
all haplotype variations within a block, we employed the
htSNPer software [36]. The htSNPer software incorporates
an efficient branch and bound algorithm to find the exact
solution of the minimum htSNP selection problem. We
used default settings of htSNPer, i.e. htSNPs were defined
to cover 80% "common haplotypes" and the threshold for
common haplotype frequency was set to 0.05. However,
we changed parameters of its block partitioning subrou-
tine such that it does not function. This setting allows the
minimum set of haplotype-tagging SNPs to be obtained

for each haplotype block of each method. Recall that
resulting htSNPs are mainly affected by the shape of
underlying block partitioning.

Given a set of htSNPs, we find the largest vicinity on the
chromosome within which only one htSNP is enough to
capture all haplotype variations. Then, we repeat the pro-
cedure on remaining regions by two, three, and more
htSNPs until the entire data is covered. We refer to the
length of total genomic segments covered in the k-th step
of this procedure as "k-htSNPs coverage". We compare
methods of haplotype block partitioning with regard to
this measure, too.

Application of haplotype blocks in disease association 
studies
The performance of block-like models of genomes in rec-
ognizing trait-associated loci can be assessed through a
case-control design. A plan of experiment can include the
following steps: 1) Using available haplotype data in Hap-
Map, the block structure of chromosomes in a certain
population is determined. 2) Considering the genotyping
cost and practical limitations, an efficient number of SNPs
is selected as markers to assay genotypes of case and con-
trol samples in these loci, as phase I genotyping. 3) An
association test is performed on each block to obtain a
scan of probably trait-associated blocks over the map. 4)
More SNPs in those probable blocks of the previous step
are genotyped until the desired fine map is achieved.
Compared to the frequently used method of sliding win-
dow, this approach has two advantages. First, it needs a
lower cost for genotyping. Secondly, there is not a com-
mon agreement on the selection of an optimum window.

Robustness of haplotype block partitioningFigure 1
Robustness of haplotype block partitioning. To assess the significance of a haplotype block partitioning algorithm, assume 
that the given samples establish a "founder" group apart from the main population. Both algorithms A and B find the same 
boundaries for haplotype blocks upon the "founder" sample (middle). If the population size is kept fixed, no mutation occurs 
and cross-overs happen only on boundaries of the blocks then after many generations all genotypes within the initial blocks 
stay the same while two locus alleles of SNP pairs between different blocks change. This results in different blocks by Algo-
rithm A and the same block partitioning by Algorithm B (right). We call a block partitioning "robust" if the method reports the 
same block structure for haplotypes many generations after the "founder" haplotypes.
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To evaluate the performance of various models for block
partitioning in case-control studies, we apply the first
three steps of the block-based design as mentioned above
on simulated data. We consider two additive single locus
disease models with GRR1 = 3 and GRR1 = 5. Since we
have obtained haplotype blocks on samples taken from
HapMap CEU panel, it is necessary to make sure that sim-
ulated samples have the same genetic structure as the base
data. The software gs [37] enables us to generate genotype
samples for case-control studies, using real genotype data
under the desired disease models. Applying the extension
model of the software, we generate 500 sets of samples,
each on consisting 50 case and 50 control genotypes. We
repeat the simulation for low and moderate disease allele
frequencies, independently. Before the next experiments,
we remove the causative SNP from each sample.

Clustering haplotypes in each block, we perform both
association and significance tests by applying the Pearson
chi-square statistic. The clustering algorithm is the same as
the one used to define "common haplotypes". In other
words, after clustering each haplotype category consists of
haplotypes no two of which differ from each other in
more than four percent of their SNP genotypes.

We follow two policies to select those markers needed for
the phase I genotyping. In the first policy, we choose the
first SNP out of every k consecutive SNPs. Following Carl-
son's approach [21] for tagSNP selection, in the second
policy, we prioritize SNPs in each block based on their
orders in Carlson's algorithm. We select SNPs from each
block based on their order until the required number of
SNPs is taken from the whole region.

Our objective is to compare the power of different algo-
rithms under the condition that false discovery rates of all
algorithms are the same. We set this common rate to 10%,
as we have observed that lower levels result in unaccepta-
bly weak power in all methods (not shown). We use half
the 500 sets of simulated case-control samples to find the
proper p-value threshold corresponding to the 10% false
discovery rate for each method. In details, chi-square val-
ues are obtained for blocks of each method. By the result,
we can estimate the distribution of the chi-square statistic
for each method. To obtain the desired p-value threshold,
we find the p-value corresponding to the first decile of chi-
square values of blocks which do not include the trait
locus. Once the p-value threshold is obtained for the
respective algorithm, we perform the association test on
the remaining 250 case-control sets and assess the statisti-
cal power. For a better comparison, we also examine the
method of single site association test, besides the block-
based association test.

Performance on detecting recombination hotspots
Our third assessment is on the application of haplotype
block partitioning algorithms for detecting recombina-
tion hotspots. Since there is no consensus on recombina-
tion hotspots within real haplotype data, we apply the
msHOT software [38], to simulate haplotype samples.
This software is an extension of Hudson's algorithm [39]
and generates samples under the coalescent model with
recombination. We generate 1000 sample sets, each one
includes 40 haplotypes of 300 SNPs. Other samples with
100 haplotypes in each set are also generated. Conditions
set include setting hotspot region lengths at a maximum
of 2 kb, a maximum of six hotspots per region of 300 kb,
and a recombination rate of 50 to 400 times higher than
the background rate at hotspot regions of recombination.
The frequency of hotspots in the simulations was based
on available knowledge of such features in the human
genome [4]. The positions of the hotspots observed in the
different simulations are recorded. All the block partition-
ing algorithms being considered are then applied to these
sample sets.

To assess the performance and accuracy of haplotype
block partitioning methods on detecting recombination
hotspots, we counted the times that haplotype block
boundaries and hotspot regions coincided with each
other. Block boundaries that occur outside hotspot
regions are regarded as false positives, while hotspot
regions not positioned at block boundaries are regarded
as false negatives. In the latter case, we consider 2 kb flank-
ing intervals around block boundaries as a standard extent
of the hotspot region. We refer to the sum of the false pos-
itive and the false negative rates as total error rate in
hotspot detection. We define the ratio of hotspot regions
coinciding with block boundaries to the number of all
hotspot regions as the power.

Results and discussion
Blocks of HapMap ENCODE regions
Results obtained by eight different haplotype block parti-
tioning methods on HapMap data in ten ENCODE
regions have been summarized on Table 3. The common
haplotype coverage as described in Method Comparison,
denotes the fraction of haplotype sample that is covered
by non-occasional haplotype clusters. Recall that we allow
a small tolerance such that the haplotypes having few dif-
ferent alleles have been clustered into the same group.
Therefore, the expected common haplotype coverage for
methods like MB and HB are higher than the default 80%
threshold that such methods are assuming for the haplo-
type block definition (Table 3). Even for other methods
that are not subjected to such a diversity criterion, the
level of common haplotype coverage is satisfactory. In
particular, MDL, GAM and GAB usually produce short
blocks that result in covering almost the whole region by
Page 8 of 16
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common haplotypes. In contrast, our new methods, GPF
and GPG, produce much wider blocks which still show
reasonable common haplotype coverage.

The consistency between block partitioning and LD pat-
tern on ENCODE regions can be shown by frequencies of
"hole" and "island". In general, it is expected that the par-
titioning with wider blocks may include more holes in
blocks and smaller blocks may miss more islands. Consid-
ering these measures, methods GPG, GPF, and HB seem to
be more reliable when most information of the LD pat-
tern is to be maintained. In contrast, GAB, GAM, and MDL
produce firmer blocks.

Figure 2 illustrates the distribution of block boundaries
along the chromosomal region 9q34.11 (ENr232). It
shows that the number of blocks and their positions are
not quite the same among the different methods used, but
there are some locations that are shared by all methods.
The block similarity of eight block partitioning methods
are shown in Table 4, in details. Most similar methods are
variants of the same method; GPG and GPF are of global
partitioning based pairwise LD of SNPs, and MB and HB
optimize arbitrary goals subject to haplotype diversity.

Results also show that overall, GAB has the most similar-
ity with any other method.

The last row of Table 3 shows how much block partition-
ing methods produce consistant block boundaries when
the resampling is performed. All methods except for HB
are quite robust under permutation. The poor result of HB
can be explained as an artifact of its underlying optimiza-
tion approach. Usually, the high sensitivity is a conse-
quence of the optimality. As shown in Figure 2, some
blocks obtained by HB have been merged into one block
on resampled generations. It shows that the model of
minimal set of tagSNPs may ignore the essential structure
of haplotypes data. In contrast, robustness of Gabriel's
method is surprising. Both methods GAB and GPG using
the Gabriel's association index are perfectly robust. Using
the real haplotype samples, the htSNP base coverage has
also been computed for each method. Figure 3 illustrates
the average htSNP base coverage averaged over ten
ENCODE regions. In addition, for each ENCODE region
separately, the number of htSNPs is shown in Table 5. As
described in the previous section, with inclusion of blocks
that need progressively larger number of htSNPs in order
to be identified, a complete coverage of the chromosome
can potentially be achieved. It is observed that in all the
methods the major coverage encompasses regions defined
by 2–5 htSNPs. It should be noted that the method used
for block partitioning affects the haplotype diversity and
consequently the number of tagging SNPs. Generally,
larger htSNP coverage produces a more economical geno-
typing. Here, we observe that HB has the best htSNP base
coverage in every level. This is not unexpected because its
algorithm has been specially tailored for this purpose. As
shown by the last segments of bars in Figure 3, methods
producing smaller blocks do not reach the coverage
achieved by other methods. By contrast, the difference at
the start level – the genome coverage by a single htSNP –
seems not to be considerable among different methods.
By increasing the number of htSNPs, a greater difference
in the covered lengths can be observed. GAM and MDL

Table 3: Features of different haplotype block partitioning methods on haplotype samples in ENCODE regions.

HOT MB HB MDL GAM GAB GPG GPF

Average block length (kbp) 68.9 46.8 36.2 17.1 13.3 23.3 35.7 39.7
Average block length (SNP) 52 36 27 13 10 18 27 30
Total run time (sec.) N/A 22 743 3295 112 143 5 5
Common haplotype coverage 0.67 0.89 0.91 0.96 0.96 0.93 0.88 0.87
Hole freq. 0.50 0.23 0.14 0.06 0.04 0.04 0.15 0.18
Island freq. 0.08 0.10 0.09 0.17 0.19 0.11 0.06 0.07
Robustness N/A 92.0 69.2 99.4 99.7 100 100 97.6

Result summary of haplotype blocks obtained by different methods on HapMap haplotypes of CEU in ENCODE regions. Common haplotype 
coverage denotes the fraction of all chromosomes that are covered by common haplotype variations in blocks. Hole freq. and Island freq. show the 
probability of a hole in blocks and the probability of an island out of any block. Robustness shows the probability that any block boundary is placed 
at the same location during resampling. See Table 1 for method abbreviations.

Table 4: Block similarity among several methods of haplotype 
block partitioning.

HOT MB HB MDL GAM GAB GPG GPF

HOT 1.00 0.32 0.31 0.16 0.13 0.26 0.39 0.40
MB 0.32 1.00 0.65 0.36 0.30 0.58 0.60 0.56
HB 0.31 0.65 1.00 0.41 0.35 0.60 0.56 0.54

MDL 0.16 0.36 0.41 1.00 0.54 0.42 0.30 0.29
GAM 0.13 0.30 0.35 0.54 1.00 0.41 0.25 0.24
GAB 0.26 0.58 0.60 0.42 0.41 1.00 0.57 0.55
GPG 0.39 0.60 0.56 0.30 0.25 0.57 1.00 0.88
GPF 0.40 0.56 0.54 0.29 0.24 0.55 0.88 1.00

The similarity measure indicates the proportion of SNP pairs 
commonly shared by different partitionings on ten ENCODE regions. 
See Table 1 for method abbreviations.
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Haplotype blocks in 9q34.11 (ENr232)Figure 2
Haplotype blocks in 9q34.11 (ENr232). Haplotype block boundaries obtained by several block partitioning methods on 
region 9q34.11. See Table 1 for method abbreviations. Locations of block boundaries in the initial sample are shown by small 
triangles. For each method, the order of haplotypes in each block are shuffled using a simulation of fixed population size with 
recombinations only in block boundaries. Generated samples are then applied to this method. The height of vertical bars depict 
the times that a location occurs on block boundaries.

MB

HB

M DL

GAM

GAB

GPF

Table 5: Number of htSNPs in each ENCODE region.

region name chromosome band HOT MB HB MDL GAM GAB GPG GPF

ENr112 2p16.3 37 35 33 51 96 77 32 33
ENr131 2q37.1 32 48 40 60 101 79 47 42
ENr113 4q26 34 37 30 46 67 47 31 31
ENm010 7p15.2 36 37 34 49 87 78 37 36
Enm013 7q21.13 17 16 15 34 69 29 23 25
Enm014 7q31.33 38 27 25 48 67 47 27 27
ENr321 8q24.11 27 35 26 49 63 49 31 30
ENr232 9q34.11 51 47 42 63 70 75 49 52
ENr123 12q12 14 33 29 48 79 59 37 38
ENr213 18q12.1 31 36 30 52 69 46 28 33

For each block, the minimum number of htSNPs has been obtained by htSNPer. The number of htSNPs in the whole region is the sum of the 
number of htSNPs in all blocks. See Table 1 for method abbreviations.
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demand more htSNPs for more complete coverage. GAB
results in the best coverage among the three local parti-
tioning methods, even by few numbers of htSNPs. It is an
undeniable advantage for MB which produces the htSNP
coverage very similar to the best method, HB, while its
optimized objective is much less complicated than HB
and attained by few computations.

By comparing the result of htSNP selection for each
ENCODE region (Table 5), we found that relaxing the
constraint of haplotype diversity for block definition can
potentially result in fewer htSNPs. This proposition can be
verified by comparing the result of GPF and GPG with HB
in Table 5. However, it has been reported that carrying
much genomic information by the least possible number
of tagSNPs, while appealing in reducing genotyping cost,
can result in less accurate repeatable findings [40]. To
address this issue, we examine the efficiency of the
selected htSNPs in haplotype reconstruction, to find out
whether the number of htSNPs in large blocks is underes-
timated. We performed a perfect cross-validation proce-
dure for each method to assess accuracy of haplotype
reconstruction based on HapMap haplotype data in all
ENCODE regions. As shown by Figure 4, htSNPs in every
method can describe all the necessary information to
reconstruct at least 70% of crossed out haplotypes from
given samples. It is close to the number that htSNPer guar-
antees to cover for "common haplotypes". The reconstruc-
tion accuracy varies among different block partitioning
methods, but in general, it slightly decays when tagged
SNPs increase. The small blocks of MDL and GAM have a
greater effect on the accuracy as it seems hard to find a
trend for accuracy decay in Figure 4 for these methods.

Reconstruction accuracies of other methods are almost
steady after six or more SNPs being tagged by a htSNP.

Effect of different block structures on performance of 
disease association study
Values of Type I error on Table 6 show the probability that
the test recognizes a block as trait-associated when the
block does not actually include the trait locus. These
errors are results of chi-square tests at a 0.05 level of sig-
nificance, which have been performed on 250 sets of sim-
ulated case-control samples before taking adaptive
thresholds for each method (see Method section). As
shown in Table 6, with higher risk ratio, more type I error
is committed by all methods. However, disease allele fre-
quency has a greater effect on type I error than GRR1.

The power of the block-based association test and the sin-
gle site method are depicted in Figures 5 and 6. The power
of single site test decreases with sparser marker distribu-
tion. The same behavior can be partially found in block-
based methods. However, the power of block-based meth-
ods is generally higher than the single site method even in
the case of lower marker density. It shows that incorporat-
ing the LD information into the association study results
in better performance. In fact, in the case of small disease
allele frequency, the decrease of power is due to weaker
LD between causative SNP and other SNPs. As shown in
Figure 5, our methods are slightly more successful than
other methods in improving the power of association
tests.

Distribution of genome length covered by htSNPsFigure 3
Distribution of genome length covered by htSNPs. 
The height of each stacked bar at each level shows the total 
length of regions in the genome which are tagged by a certain 
number of htSNPs. See Table 1 for method abbreviations.
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Table 6: Type I error in the disease association study.

Disease model parameters SS* MB HB MDL GAB GPG GPF

DAF = 5% – 15%, GRR1 = 3 0.26 0.20 0.17 0.16 0.17 0.13 0.13
DAF = 5% – 15%, GRR1 = 5 0.32 0.24 0.21 0.20 0.22 0.16 0.17
DAF = 20% – 30%, GRR1 = 3 0.29 0.21 0.18 0.17 0.19 0.14 0.15
DAF = 20% – 30%, GRR1 = 5 0.34 0.25 0.22 0.22 0.23 0.17 0.19

Chi-square tests have been performed at 0.05 level of significance, on 250 sets of 50/50 case-control samples. Each entry depicts the proportion of 
blocks that have been falsely recognized as trait-associated to all the blocks that do not include the trait locus. * Method of single site test. See 
Table 1 for method abbreviations.

Performance of various block structures on disease association study with non-prioritized SNPsFigure 5
Performance of various block structures on disease association study with non-prioritized SNPs. Power of a 
block-based disease association test vs. density of marker distribution for various block structures is shown. SS is the method 
of single site test. For other abbreviations see Table 1. No particular policy has been applied to select SNPs for marker loca-
tions.
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Performance of various block structures on disease association study with prioritized SNPsFigure 6
Performance of various block structures on disease association study with prioritized SNPs. Power of a block-
based disease association test vs. density of marker distribution for various block structures is shown. SS is the method of sin-
gle site test. For other abbreviations see Table 1. Sorting SNPs based on their informativeness in each block, a number of SNPs 
proportional to the marker density and size of the block is selected.
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Table 7: Total error rate on detection of recombination hotspots*.

MB HB MDL GAM GAB GPG GPF

N = 40 false positive rate 2.6 15.4 3.8 5.3 3.0 1.9 1.6
false negative rate 2.5 0.9 1.2 0.7 3.1 0.9 1.0
total error rate 5.1 16.3 5.0 6.0 6.1 2.8 2.6

N = 100 false positive rate 3.8 12.2 2.6 4.9 3.4 1.1 1.0
false negative rate 2.2 1.1 0.9 0.9 2.2 0.8 1.1
total error rate 6.0 13.3 3.5 5.8 5.6 1.9 2.0

See Table 1 for method abbreviations. N is the number of haplotypes. * All values are in percent.
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Selecting marker positions by SNPs that have been
ordered based on "informativeness" results in lesser
decrease in the power of methods where marker distribu-
tion has lower density. In the case where SNPs are selected
by prioritizing, the power of methods remains high, even
when only one fifth of the original SNPs are used as mark-
ers (Figure 6). MDL is relatively efficient when markers are
selected uniformly. When markers are prioritized, as one
might expect, HB performs better. Nevertheless, the two
versions of our model – GPG and GPF – are more efficient
even when marker density is low.

Performance on recombination hotspot detection
Given arbitrary hotspot regions, the sample generator pro-
gram provides us with two datasets of simulated haplo-
type samples. Using the hotspot locations as our
references, we can estimate the hotspot detection error.
This error is the sum of false positive and negative hits.
Table 7 illustrates the total error rate in recombination
hotspots detection with respect to different sample sizes
(40 and 100), for each block partitioning method. Except
for HB, the error rate of other methods is reasonable. The
method structure in MB and HB is the same, but the
former minimizes the number of haplotype blocks and
the latter minimizes the number of haplotype-tagging
SNPs. Therefore, it can be deduced that the approach of
minimal tagging does not fit well with patterns of recom-
bination. At the opposite side, GPG and GPF get the least
total error rate among other methods.

It seems more probable that a block boundary occurs out
of hotspot regions than a hotspot region is left undetected

with no block boundary. Figure 7 plots the power of the
hotspot detection versus the error, i.e the false positive
rate. In general, increasing haplotype samples reduces the
error rate by all methods but MB (See Table 7). However,
improvement in the performance of MB compensates for
this effect. For GPG, MDL, GAB and MB the power
increases by increasing the sample size. By contrast, for
GPF, HB and GAM, we observe a decrease in power, but
this is accompanied by a better prediction accuracy. Our
proposed method has the lowest type I error among the
other methods and still, it correctly detects a hotspot with
~75% probability. GAM also shows the same perform-
ance, around 80 percent. This is mainly due to its block
definition that is relevant to the coalescent model of the
simulated data.

Conclusion
Here, we present a method for global haplotype partition-
ing based on pairwise analysis of SNPs. In this approach,
haplotype blocks are defined such that the number of
associated pairs in blocks is maximal, and blocks include
only a small number of independent SNP pairs. The nor-
malized coefficient of linkage disequilibrium, D', is used
as a scan statistic to determine independent SNP pairs and
Fisher's exact test and its corresponding p-value determine
the significance of dependency between SNP pairs. Fur-
thermore, Gabriel's index is applied in determination of
association classes.

Since the early observation of haplotype block structure in
human genomes, several groups have developed block
models assuming constraints on haplotype diversity.

Performance on recombination hotspot detectionFigure 7
Performance on recombination hotspot detection. Power indicates the rate of coincidence between hotspots and 
block boundaries. "Error" is the probability that a location out of any hotspot regions is identified as a block boundary by the 
method. The assessment has been performed on two sets of simulation generated samples with 40 haplotypes in each replica-
tion, (a), and with 80 haplotypes in each replication, (b).
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However, it has been suggested that such assumptions
should be used carefully in applications [41,42]. Our
results from ENCODE data show that methods based on
pairwise analysis of SNPs, without initial assumptions on
haplotype diversity, find blocks in which haplotype diver-
sity is consistent with the standard thresholds used in clas-
sical methods. We assessed the similarity of haplotype
block structures by counting SNP pairs in overlapping
regions in blocks of different partitionings. We did not
find any general concordance among block boundaries in
different methods. A previous study has also reached the
same conclusion [24]. Nevertheless, each method does
produce blocks with 50% similarity with blocks of at least
one other method.

The consistency of block boundaries within each single
method was also investigated by a permutation resam-
pling. To do so, we recorded the number of times in which
a certain method would reproduce the same boundaries
when applied to simulated recombinant samples. It was
observed that the rule of Gabriel to determine the associ-
ation index within SNP pairs was highly robust. Our algo-
rithm was also relatively robust.

In our method, the number of htSNPs is not subjected to
minimization. However, the number and also the cover-
age of htSNPs within the resulting blocks compare well
with the optimal values obtained by diversity-based
approaches.

In a case-control study, a block-based approach for map-
ping a single locus trait was applied to blocks of various
methods. The results show that any block-based associa-
tion test is considerably more efficient than the conven-
tional single site association test. In particular, our newly
developed block partitioning method performed best
accuracy for the case-control study, even when a low
marker density is available.

Biological considerations suggest that block boundaries
produced by block partitioning methods should exhibit
some concordance with recombination hotspots. In this
regard, we assessed the performance of methods on simu-
lated data. Global block partitioning methods performed
best both in terms of accuracy and power. In fact, our
method may be considered an efficient and simple tool
for gaining insight of recombination hotspots.

In conclusion, our assessments show that our proposed
global partitioning method, the method of minimum
description length, and Gabriel's method are all promis-
ing for case-control association studies and for detection
of recombination hotspots. Furthermore, we have shown
that allelic association of SNP pairs can partially describe
aspects of genomic variations in human populations.
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