In the name of God

Department of Physics Shahid Beheshti University

 STOCHASTIC PROCESSES

 STOCHASTIC PROCESSES}

Exercise Set 10

(Due Date: 1401/03/27)

1. According to following definition:

$$
\int_{-\infty}^{+\infty} x^{n} \exp \left[-(x-\beta)^{2}\right] d x=(2 i)^{-n} \sqrt{\pi} H_{n}(i \beta)
$$

where H_{n} is the Hermite polynomial, show that conditional moment reads as:

$$
M_{n}\left(x^{\prime}, t, \tau\right)=\left[-i \sqrt{D^{(2)}\left(x^{\prime}, t\right) \tau}\right]^{n} H_{n}\left\{\frac{1}{2} i D^{(1)}\left(x^{\prime}, t\right) \sqrt{\tau / D^{(2)}\left(x^{\prime}, t\right)}\right\}
$$

also show that above equation causes to correct function for $D^{(n)}$.
2. Using Green's function approach show that:

$$
\dot{G}_{i j}+\xi_{i k} G_{k j}=0
$$

3. According to forward solution, and suppose that $D^{(4)}(x, t)=0$, show that:

$$
p\left(x, t+\tau \mid x^{\prime}, t\right)=\left[1-\frac{\partial}{\partial x} D^{(1)}(x, t) \tau+\frac{\partial^{2}}{\partial x^{2}} D^{(2)}(x, t) \tau\right] \delta\left(x-x^{\prime}\right)
$$

has the following solutions:
(a) $p\left(x, t+\tau \mid x^{\prime}, t\right)=\frac{1}{2 \sqrt{\pi D^{(2)}\left(x^{\prime}, t\right) \tau}} \exp \left(-\frac{\left[x-x^{\prime}-D^{(1)}\left(x^{\prime}, t\right) \tau\right]^{2}}{4 D^{(2)}\left(x^{\prime}, t\right) \tau}\right)$
(b) $p\left(x, t+\tau \mid x^{\prime}, t\right)=\frac{1}{2 \sqrt{\pi D^{(2)}(x, t) \tau}} \exp \left(-\frac{\partial}{\partial x} D^{(1)}(x, t) \tau+\frac{\partial^{2}}{\partial x^{2}} D^{(2)}(x, t) \tau-\frac{\left[x-x^{\prime}-\left(D^{(1)}(x, t)-2 \frac{\partial}{\partial D^{2}} D^{(2)}(x, t) \tau\right]^{2}\right.}{4 D^{(2)}(x, t) \tau}\right)$
4. Path integral solution: According to Markovian property show that:
$p(x, t)=\lim _{N \rightarrow \infty} \int \ldots \int \Pi_{i=0}^{N-1}\left\{\frac{d x_{i}}{\sqrt{4 \pi D^{(2)}\left(x_{i}, t_{i}\right)}}\right\} \times \exp \left(-\sum_{i=0}^{N-1} \frac{\left[x_{i+1}-x_{i}-D^{(1)}\left(x_{i}, t_{i}\right) \tau\right]^{2}}{4 D^{(2)}\left(x_{i}, t_{i}\right) \tau}\right) p\left(x_{0}, t_{0}\right)$
The summation in exponential can be written by Generalized Onsager-Machlup function for discrete case.
5. Show that the forward and backward Kramers-Moyal expansion are equivalent.
6. According to:

$$
p\left(x, t+\tau \mid x^{\prime}, t\right) p\left(x^{\prime}, t\right)=p(x+\Delta-\Delta, t+\tau \mid x-\Delta, t) p(x-\Delta, t)
$$

where $x^{\prime}=x-\Delta$, derive the forward Kramers-Moyal expansion. (hint: this is called the third approach of expansion derivation mentioned in the class.
7. Exercise 3.4 and 3.5 of book "Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems Using the Methods of Stochastic Processes", written by M. Reza Rahimi Tabar.

