In the name of God

Department of Physics Shahid Beheshti University

ADVANCED STATISTICAL MECHANICS I

Exercise Set 3

(Due Date: 1400/09/12)

- 1. Ultra-relativistic Gas. Suppose that the energy of one-particle is $\epsilon = \sqrt{\vec{p}^2 c^2 + m_0^2 c^4}$ and for ultra-relativistic regime, we can ignore the rest mass energy and in this case we have $\epsilon = |\vec{p}|c$. For *N*-particle system in 3-dimension, compute the volume of phase space, Σ and accordingly, compute Ω when U = cts. Then compute the Entropy, U(S, V, N) and μ .
- 2. For N classical distinguishable harmonic oscillators, with frequency ω in one-dimension, calculate the thermodynamical properties $(S, U, P, \mu$ and Heat capacities). Suppose the hamiltonian is given by $\mathcal{H} = \sum_{i=1}^{N} \left[\frac{p_i^2}{2m} + \frac{1}{2} \omega^2 q_i^2 \right]$

Good luck, Movahed