In the name of God

Department of Physics Shahid Beheshti University

ADVANCED STATISTICAL MECHANICS I

Exercise Set 2

(Due Date: 1402/08/03)

1. Ideal Gas state equation: In order to derive the equation of state for Ideal Gas whose Hamiltonian is given by $\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{\text {int }}$, where $\mathcal{H}_{\text {int }}=0$, there are at least three approaches. An approach is based on the first law of Thermodynamics and using Maxwell relations for thermodynamics. Based on the mentioned approach and pointing out on the Joule expansion of ideal gas, show that the internal energy depends on only temperature and particle number, namely $U(T, N) \sim N T$. (Hint: show that $\partial U / \partial P=0$ and $\partial U / \partial V=0$.)
2. Zero law of thermodynamics: suppose that A, B and C are in thermal equilibrium. For A and C, we have:

$$
P_{A} V_{A}-n_{A} r_{A} P_{A}-P_{C} V_{C}=0
$$

and for B and C , we have:

$$
P_{B} V_{B}-P_{C} V_{C}+\frac{n_{B} r_{B} P_{C} V_{C}}{V_{B}}=0
$$

Find 3 state equations of this system which are in thermal equilibrium.
3. Show that the violation of Kelvin-Planck's statement yields the violation of Clausius's statement and vise versa.
4. Show that it is impossible to have an engine possessing efficiency higher than Carnot engine.
5. Suppose that a system with T_{s} is contacted thermally with a reservoir with T_{R}.

$$
\begin{aligned}
& \text { A : Compute } \Delta S_{\text {total }}=\Delta S_{\text {reservoir }}+\Delta S_{\text {system }} \text { if at the initial point } T_{R}>T_{s} . \\
& \text { B : Compute } \Delta S_{\text {total }}=\Delta S_{\text {reservoir }}+\Delta S_{\text {system }} \text { if at the initial point } T_{R}<T_{s} . \\
& \text { C : For each cases, plot the } \Delta S_{\text {total }}, \Delta S_{\text {reservoir }} \text { and } \Delta S_{\text {system }} \text { as a function of } T_{R} / T_{s}
\end{aligned}
$$

6. Producing a piece of ice during a night at desert. Is it possible to freeze water in a plate in the naked sky in desert? (Hint; suppose that the temperature of water is $T=6^{\circ} \mathrm{C}$ and the temperature of naked dark sky is $T=-23^{\circ} \mathrm{C}$. The time for doing experiment would be sunset till sunrise.)
7. We have a refrigerator which its power equates to 100 W and a heater with 100 W are working in the room temperature. Which system makes more heat in the room. Explain your answer.
8. We have a box isolated from the environment with volume V. We divided it into two parts with $x V$ and $(1-x) V$. Pressures and temperatures in both partition are equal. There are $x n$ and $(1-x) n$ particle in left and right parts, respectively. Now we remove the partition, how much changes will be occurred in Entropy?

Good luck, Movahed

