In the name of God

Department of Physics Shahid Beheshti University

ADVANCED TOPICS IN STATISTICAL PHYSICS II

Exercise Set 6

(Date Due: 1393/01/30)

1. The same as my calculation regarding $N_{3}(\nu), N_{2}(\nu)$ and $N_{1}(\nu)$ for $1+3 \mathrm{D}$ Gaussian stochastic field, calculate the relevant quantities for $1+2 \mathrm{D}$ and $1+1 \mathrm{D}$ in the Gaussian case.
2. Suppose that for a $1+3 \mathrm{D}$ Gaussian random field, power spectrum is given by:

$$
P(k)=A k^{n} \exp \left[-\frac{1}{2}\left(k^{2} \lambda^{2}-\frac{1}{k^{2} \mu^{2}}\right)\right]
$$

here λ and μ are short-wavelenght and long-wavelenght cutoff respectively. Compute $N_{1}(\nu), N_{2}(\nu)$ and $N_{3}(\nu)$.
3. For a stochastic field in D-dimension, show that (see ref. T. Matsubara, The Astrophysical Journal, 584:1-33, (2003)):

$$
N_{1}(\nu)=\frac{1}{\pi D} \frac{\sigma_{1}}{\sigma_{0}} e^{-\nu^{2} 2}\left\{1+\left[\frac{S^{(0)}}{6} H_{3}(\nu)+\frac{S^{(1)}}{3} H_{1}(\nu)\right] \sigma_{0}+\mathcal{O}\left(\sigma_{0}^{2}\right)\right\}
$$

where $S^{(0)}=\frac{\left\langle f^{3}\right\rangle}{\sigma_{0}^{4}}, \quad S^{(1)}=-\frac{3}{4} \frac{\left\langle f^{2} \nabla^{2} f\right\rangle}{\sigma_{0}^{2} \sigma_{1}^{2}}$. Use $\mathcal{R}(k, l) \equiv\left\langle\left.\left(\frac{\partial}{\partial \alpha}\right)^{k}\left(\frac{\partial}{\partial \eta_{1}}\right)^{l} \delta(\alpha-\nu) \eta_{1} \right\rvert\,\right\rangle=$ $\frac{h_{l-2}}{\pi}\left(\frac{\sigma_{1}}{\sqrt{\bar{D}} \sigma_{0}}\right)^{1-l} e^{-\nu^{2} / 2} H_{k}(\nu)$

Good luck, Movahed

