Department of Physics Shahid Beheshti University

ADVANCED TOPICS IN STATISTICAL PHYSICS II

Exercise Set 5

(Date Due: 1394/03/01)

1. Computational program: Here we are going to compute Kramers-Moyal coefficients for simulated data given in previous set of problem.

A : Compute $D^{(1)}(x, t)$ and $D^{(2)}(x, t)$ and plot them as a function of x. (Hint: at first you should determine the markov length scale and set $t=t_{\text {Markov. }}$.)
\mathbf{B} : Show that $D^{(4)}(x, t)$ is very small in comparison with $D^{(2)}(x, t)$.
2. According to forward solution, and suppose that $D^{(4)}(x, t)=0$, show that:

$$
p\left(x, t+\tau \mid x^{\prime}, t\right)=\left[1-\frac{\partial}{\partial x} D^{(1)}(x, t) \tau+\frac{\partial^{2}}{\partial x^{2}} D^{(2)}(x, t) \tau\right] \delta\left(x-x^{\prime}\right)
$$

has the following solutions:
A :

$$
p\left(x, t+\tau \mid x^{\prime}, t\right)=\frac{1}{2 \sqrt{\pi D^{(2)}\left(x^{\prime}, t\right) \tau}} \exp \left(-\frac{\left[x-x^{\prime}-D^{(1)}\left(x^{\prime}, t\right) \tau\right]^{2}}{4 D^{(2)}\left(x^{\prime}, t\right) \tau}\right)
$$

B :

$$
p\left(x, t+\tau \mid x^{\prime}, t\right)=\frac{1}{2 \sqrt{\pi D^{(2)}(x, t) \tau}} \exp \left(-\frac{\partial}{\partial x} D^{(1)}(x, t) \tau+\frac{\partial^{2}}{\partial x^{2}} D^{(2)}(x, t) \tau-\frac{\left[x-x^{\prime}-\left(D^{(1)}(x, t)-2 \frac{\partial}{\partial x} D^{(2)}(x, t)\right) \tau\right]^{2}}{4 D^{(2)}(x, t) \tau}\right.
$$

Good luck, Movahed

