In the name of God

Department of Physics Shahid Beheshti University

 MODERN PHYSICS

 MODERN PHYSICS}

Exercise Set 1
 (Due Date: 1402/12/10) (Due Date: 1402/12/18)

1. According to the definition of thermal wavelength, $\lambda_{T} \equiv\left(\frac{h^{2}}{2 \pi m k_{B} T}\right)^{1 / 2}$, compute the order of magnitude of: A: The typical value of λ_{T} for mankind in the room temperature.
\mathbf{B} : The typical value of λ_{T} for air molecules in the room temperature.
\mathbf{C} : The typical value of λ_{T} for proton in the colliding experiment in CERN.
D : The typical value of λ_{T} for Hydrogen atom when the age of Universe was only 300,000 years old.
\mathbf{E} : The typical value of λ_{T} for Hydrogen atom for interstellar medium .
\mathbf{F} : The typical value of λ_{T} for Hydrogen atom when the age of Universe was only 300,000 years old.
\mathbf{G} : Plot the λ_{T} for Hydrogen atom as a function of Temperature in the range of when the universe had only 300,000 years old till now. (Hint: $T(t=300,000$ years $)=2725 \mathrm{~K}$ and temperature as the current era is about $T\left(t=13.8 \times 10^{10}\right.$ years $\left.)=2.7255 \pm 0.0006 \mathrm{~K}\right)$.
2. An straightforward mathematical modeling for wave-behavior of particle is given by a Gaussian function as follows:

$$
|\psi(x)|^{2} \sim e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

above function is associated with probability of finding a particle in position x. Plot above function for $\sigma=0.001, \sigma=0.01, \sigma=0.1, \sigma=1, \sigma=10$ and $\sigma=100$. (Hint: you can use Mathematica or Maple or Python to plot this function)
3. Lenard-Jones potential: In order to model the potential between molecules, a feasible function is so-called Lenard-Jones as:

$$
\mathcal{U}(r)=\left[\frac{A}{r^{12}}-\frac{B}{r^{6}}\right]
$$

Plot above function. Also investigate $\lim _{r \rightarrow 0} \mathcal{U}(r)$ and $\lim _{r \rightarrow \infty} \mathcal{U}(r)$. Suppose $A=B=1$
4. For an Ideal Gas the Pressure and internal energy are given by:

$$
\begin{gathered}
P V=N k_{B} T=n R T \\
U=\frac{3}{2} N k_{B} T
\end{gathered}
$$

but if we have non-Ideal gas for which the Hamiltonian is $\mathcal{H}=\mathcal{H}_{0}+\mathcal{U}$, then above quantities are modified via:

$$
\begin{gathered}
P=n k_{B} T\left[1-\frac{n}{2 D k_{B} T} \int d^{D} r r \frac{d \mathcal{U}(r)}{d r} g(r)\right] \\
U=\frac{D}{2} N k_{B} T+\frac{n N}{2} \int d^{D} r r \mathcal{U}(r) g(r)
\end{gathered}
$$

suppose that for $D=3$ (3-dimension) and $g(r)=\left((\sin (r) / r)^{2}+1\right)(1-\exp (-r))$ and $\mathcal{U}=-\frac{1}{r}$, compare numerically the pressure and internal energy of interacting system with ideal gas and plot them as a function of Temperature.
5. A simple molecular dynamic simulation:

Suppose that we have a box in 2-dimension with size $L=1$ including 10 atoms whose radius equates to $d=0.01$. Also suppose that the Hamiltonian is $\mathcal{H}=\sum_{i=1}^{10} \frac{\vec{p}_{i}^{2}}{2 m}$. The collision between pairs and the walls are completely elastic. Simulate the evolution of them and make a movie from their evolution. (Hint: the initial conditions come from the Maxwell-Boltzmann distribution for velocity and the location of atoms are randomly selected inside the dox, also consider $T=k_{B}=m=1$).
6. Equipartition theorem: Suppose that for a system in D-dimension with N particles, the Hamiltonian is given by:

$$
\mathcal{H}=\sum_{i=1}^{D N}\left(\frac{p_{i}^{\xi}}{2 m}+m q_{i}^{\gamma}\right)
$$

Using equipartition theorem, show that:

$$
E \equiv\langle\mathcal{H}\rangle=\frac{D N}{\xi} k_{B} T+\frac{D N}{\gamma} k_{B} T
$$

7. All questions of chapter 1 for Krane, Kenneth S. Modern physics. John Wiley \& Sons, 2019 must be answered.
8. Questions no. $3,5,6,10,13$ and 16 of chapter 1 for Krane, Kenneth S. Modern physics. John Wiley \& Sons, 2019.

Good luck, Movahed

