
Assembly Language for x86 Processors
6th Edition

Chapter 12: Floating-Point Processing
and Instruction Encoding

(c) Pearson Education, 2010. All rights reserved. You may modify and copy this slide show for your personal use, or for
use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

Slide show prepared by the author
Revision date: 2/15/2010

Kip R. Irvine

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 2

IEEE Floating-Point Binary Reals

• Types

• Single Precision
• 32 bits: 1 bit for the sign, 8 bits for the exponent,

and 23 bits for the fractional part of the significand.
•

• Double Precision
• 64 bits: 1 bit for the sign, 11 bits for the exponent,

and 52 bits for the fractional part of the significand.
•

• Double Extended Precision
• 80 bits: 1 bit for the sign, 16 bits for the exponent,

and 63 bits for the fractional part of the significand.

3

Floating Point Representation
§ Floating point numbers are finite precision numbers used to

approximate real numbers
§ We will describe the IEEE-754 Floating Point Standard since it is

adopted by most computer manufacturers: including Intel
§ Like the scientific notation, the representation is broken up in 3

parts
Scientific notation: -245.33 = -2.4533*10-2 = -2.4533E-2

§ A sign s (either 0 or 1) ‘-’
§ An exponent e -2
§ A mantissa m (sometimes called a significand) -2.4533

§ So that a floating point number N is written as: (-1)s × m × 10e

§ Or, if m is in binary, N is written as:

es mN 2)1(××−=
§ Were the binary mantissa is normalized such that :

§ m = 1.f with 1 ≤ m < 2 and 0 ≤ f < 1

4

Floating Point Representation (cont.)

§ Hence we can write N in terms of fraction f: 0 <= f < 1

§ The IEEE-754 standard defines the following formats:

eS fN 2)1()1(×+×−=

§ Hence, the value 1 in 1+f (= 1.f) is NOT stored: it is implied!
§ Mantissa: 1 ≤ m = 1.f = 1+f < 2 → 0 ≤ f < 1

§ Extended precision formats (on 80 bits) with more bits for the
exponent and fraction is also defined for use by the FPU

Single precision (32 bits) Double precision (64 bits)

Exponent Exponent FractionFraction

Sign bit s Sign bit s

23 bits8 bits 11 bits 52 bits

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 5

Single-Precision Format

exponent fraction

1 238

sign

Approximate normalized range: 2–126 to 2+127.
Also called a short real.

The three formats are similar but differ only in their
sizes. Thus, our discussions will focus only on the
Single-Precision format.

• Double-Precision: 2–1022 to 2+1023

• Extended-Precision: 2–32766 to 2+32767

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010.
6

Components of a Single-Precision Real
• Sign s

• 1 = negative, 0 = positive
• Significand m

• All decimal digits to the left & right of decimal point
• Weighted positional notation

• Example: 123.154 = (1 x 102) + (2 x 101) + (3 x 100) + (1 x 10–1)
+ (5 x 10–2) + (4 x 10–3)

• Exponent e
• signed integer: -126 ≤ e ≤ +127 for single precision
• integer bias: an unsigned biased exponent E = e + bias is

stored in the exponent field instead, where bias =
• 127 for single precision (thus 0 ≤ E < 256)
• 1023 for double precision (thus 0 ≤ E < 2048)
• 32767 for extended precision (thus 0 ≤ E < 65536)

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010.
7

The Exponent
• Sample Exponents represented in Binary
• Add bias 127 (for single-precision) to the actual exponent e to

produce the biased exponent E = e+127

• Example:
• Floating point number 1.27 has exponent e = 0. Hence: E = 0 + 127 = 127 =

7Fh is stored in the exponent field
• Floating point number 12.3 = 1.537..x 23 has e = 3. Hence: E = 3 + 127 = 130

= 82h is stored in the exponent field
• Floating point number 0.15 = 1.2 x 2-3 has e = -3. Hence: E = -3 + 127 = 124 =

7Ch is stored in the exponent field.
The mantissa must first be normalized before biasing the exponent

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 8

Normalizing Binary Floating-Point Numbers
• Mantissa m is normalized when a single 1 appears to the left

of the binary point
• Unnormalized: shift binary point until exponent is zero
• Examples

• Hence we can write N in terms of fraction f, 0 ≤ f < 1

§ The value 1 in 1+f (= 1.f) is NOT stored: it is implied!

eS fN 2)1()1(×+×−=

9

Representation for the Fraction

§ In base 2, any fraction f < 1 can be written as:

§ The algorithm to find each bit of a fraction f (ex: f = .6):

§ The msb of the fraction is 1 iff f >= ½. Hence the msb = 1 iff
2f >= 1.

§ Let f’ be the fraction part of 2f. Then the next msb of f is 1
iff 2f’ >=1.

§ Let f’’ be the fraction part of 2f’. Then the next msb of f is 1
iff 2f’’ >=1.

§ … and so on

,...),,(...22 321
2

2
1

1 −−−
−

−
−

− =+×+×= bbbbbf

is the most significant bit (msb) of the fraction1−b
Where each

and

is a bit}1,0{∈ib

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 10

Converting Fractions to Binary Reals

• Express as a sum of fractions having denominators
that are powers of 2 (or, sum of negative powers of 2)

• Examples

11

Representation for the Fraction (cont.)

§ Example: find all the bits of fraction f = .15

2 x 0.15 = 0.30 msb = 0
2 x 0.30 = 0.60 0
2 x 0.60 = 1.20 1
2 x 0.20 = 0.40 0
2 x 0.40 = 0.80 0
2 x 0.80 = 1.60 1
2 x 0.60 repeat of last 4 bits

Hence: 0.15 = 0.001001 = 0.001001100110011001...
ten two two

When truncation is used, the following 23 bits will be stored in the
single precision fraction field: 00100110011001100110011

12

Defining Floating Point Values in ASM
§ We can use the DD directive to define a single precision floating

point value. Ex:
float1 REAL4 17.15 ;single precision float
float2 REAL4 1.715E+1 ;same value as above

§ The bits will be placed in memory according to the IEEE standard for
single precision. Here we have:
§ 17 = 10001b and 0.15 = 0.001001b
§ 17.15 = 10001.001001b = 1.0001001001b x 2^{4}
§ Hence e=4. So E = 127+4 = 131 = 10000011b

§ So if truncation is used for rounding, we have:
MOV eax,float1
; eax = 0 10000011 00010010011001100110011
; eax = 41893333h
;so float3 REAL4 41893333h is same as above definitions
float1 and float2

§ We can use the DQ directive to define a double precision floating
point value. Ex:

double1 dq 0.001235 ;double precision value
double2 dq 1.235E-3 ;same value as above

13

Rounding
§ Most of the real numbers are not exactly representable with a finite

number of bits.
§ Many rational numbers (like 1/3 or 17.15) cannot be represented

exactly in an IEEE format
§ Rounding refers to the way in which a real number will be

approximated by another number that belongs to a given format
§ Ex: if a format uses only 3 decimal digit to represent a fraction, should

2/3 be represented as 0.666 or 0.667 ?

§ Truncation is only one of the methods used for rounding. Three
other methods are supported by the IEEE standard:
§ Round to nearest number (the default for IEEE)
§ Round towards + infinity
§ Round towards – infinity

§ Rounding to nearest is usually the best rounding method so it is
chosen as the default. But since other methods are occasionally
better, the IEEE standard specifies that the programmer can choose
one of these 4 rounding methods.

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 14

Real-Number Encodings

• Normalized finite numbers
• all the nonzero finite values that can be encoded in a

normalized real number between zero and infinity

• Positive and Negative Infinity

• NaN (not a number)
• bit pattern that is not a valid FP value

• Two types:
• Quiet NaN: does not cause an exception
• Signaling NaN: causes an exception

– Example: Divide-by-Zero

15

Representation of Specific Values

§ Recall that exponent e uses a biased representation. It is
represented by unsigned int E such that e = E – 0111...1b

§ Let F be the unsigned integer obtained by concatenating the bits of
the fraction f

§ Hence a floating point number N is represented by (S,E,F) and the
“1” in 1+f = 1.f is implied (not represented or included in F).

§ Then note that we have no representation for zero!!

§ Because of this, the IEEE standard specifies that zero is represented
by E = F = 0
§ Hence, because of the sign bit, we have both a positive and a

negative zero

§ Only a few bits are allocated to E. So, a priori, numbers with very
large (and very low) magnitudes cannot be represented.

eS fN 2)1()1(×+×−=

16

Representation of Specific Values (cont.)
§ Hence, the IEEE standard has reserved the following interpretation

when E contains only ones
§ + infinity when S = 0, E = 111..1, and F = 0
§ - infinity when S = 1, E = 111..1, and F = 0
§ Not a Number (NaN) when E = 111..1, and F != 0

§ Hence “normal” floating point values exist only for E < 111..11.
§ The +/- infinity value arises when a computation gives a number that

would require E >= 111..11
§ The +/- infinity value can be used in operands with predictable

results. Ex:
§ +infty + N = +infty
§ -infty + N = -infty
§ +infty + +infty = +infty

§ Undefined values are represented by NaN. Examples:
§ +infty + -infty = NaN
§ +infty / +infty = NaN
§ 0 / 0 = NaN

17

Denormalized Numbers
§ Now, the smallest nonzero magnitude would be when E=0 and F =

00..01. This would give a value of 1.00…01 x 2^{-127} in single
precision

§ To allow smaller magnitudes to be represented, IEEE have
introduced denormalized numbers

§ A denormalized number has E=0 and F!=0. The implicit “1” to the left
of “.” now becomes “0”.
§ Hence, the smallest nonzero single precision denormalized number is

0.00…01 x 2^{-127} = 2^{-23} x 2^{-127} = 2^{-150}

§ The largest single precision denormalized number is then
2^{-127} x (1 - 2^{-23}).

§ Hence normal numbers, called normalized numbers, use E such that
0 < E < 11…1.
§ The smallest (positive) single precision normal number is then

1.00…0 x 2^{-126}

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 18

Real-Number Encodings (cont)

• Specific encodings (single precision):

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 19

Examples (Single Precision)

• Order: sign bit, exponent bits, and fractional part
(mantissa)

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 20

Converting Single-Precision to Decimal
1. If the MSB is 1, the number is negative; otherwise, it is positive.

2. The next 8 bits represent the exponent. Subtract binary 01111111
(decimal 127), producing the unbiased exponent. Convert the unbiased
exponent to decimal.

3. The next 23 bits represent the significand. Notate a “1.”, followed by the
significand bits. Trailing zeros can be ignored. Create a floating-point
binary number, using the significand, the sign determined in step 1, and
the exponent calculated in step 2.

4. Unnormalize the binary number produced in step 3. (Shift the binary point
the number of places equal to the value of the exponent. Shift right if the
exponent is positive, or left if the exponent is negative.)

5. From left to right, use weighted positional notation to form the decimal sum
of the powers of 2 represented by the floating-point binary number.

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 21

Example
Convert 0 10000010 0101100000000000000000 → Decimal

S E F → (s,e,f)
1. The number is positive. S = 0

• s = +
2. The unbiased exponent is binary 00000011, or decimal 3.

• e = E-127 = 10000010 – 01111111 = 130 – 127 = +3
3. Combining the sign s, exponent e, and significand f, the

binary number is +1.01011 X 23.
• F = 0101100000000000000000 → f = 1. 01011

4. The unnormalized binary number is +1010.11.
• Shift the binary point “.” until the unbiased exponent e = 0

5. The decimal value is +10 3/4, or +10.75.
• Simply convert +1010.11 to decimal: +1010.11 → +10.75

22

Summary of IEEE Floating Point Numbers
§ Each number is represented by (S,E,F)

§ S represents the sign of the number
§ The exponent “e” of the number is: e = E – 011..1b
§ F is the binary number obtained by concatenating the bits

of the fraction

§ Normalized numbers have: 0 < E < 11..1
§ The implicit bit on the left of the decimal point is 1

§ Denormalized numbers have: E = 0 and F != 0
§ The implicit bit on the left of the decimal point is 0

§ Zero is represented by E = F = 0
§ +/- Infinity is represented by E = 11..1 and F = 0
§ NaN is represented by E = 11..1 and F != 0

23

Exercises
§ Exercise 1: Find the IEEE single precision representation, in

hexadecimal, of the following decimal numbers (assume that
truncation is used for rounding):

§ 1.0
§ 0.5
§ -83.7
§ 1.1E-41

§ Exercise 2: Give the decimal value represented by the IEEE single
precision representation given below in hexadecimal:

§ 45AC0000h
§ C4800000h
§ 3FE00000h

24

The Floating Point Unit (FPU)*
§ A FPU unit, designed to perform efficient computation

with floating point numbers, is built (directly) on the
Pentium processors
§ It is backward compatible with older numerical

coprocessors that were provided on a separate chip (ex:
8087 up to 387)

§ Use the .387, or .487, or .587, or .687 … to enable
assembly of FPU/coprocessor instructions

§ There are 8 general-purpose FPU registers; each 80-bit
wide.
§ Single-precision or double-precision values of the IEEE-

754 standard are placed within those 80 bits in an
extended format specified by Intel. (Intel FPUs conforms
to the IEEE-754 standard)

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 25

FPU Register Stack

• Eight individually addressable 80-bit data general-purpose
registers named R0 through R7, organized as a stack

• Three-bit field named TOP in the FPU status word identifies
the register number that is currently the top of stack.

26

General-Purpose FPU Registers
§ They are organized as a stack maintained by the FPU
§ The current top of the stack is referred by ST (Stack Top) or ST(0).

ST(1) is the register just below ST and ST(n) is the n-th register
below ST

§ 15 bits are reserved for the exponent: e = E – 3FFFh
§ The “1” in the mantissa 1.f is stored as an explicit 1 bit at position

63. Hence f is stored from bit 0 to bit 62.

ExponentS FractionST or ST(0)

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

79 78 64 63 0 Tags

tag(0)

tag(1)

tag(7)

tag(2)

tag(3)

tag(4)

tag(5)

tag(6)

27

The Tag Register
§ The Tag register is a 16-bit register

§ The first 2 bits, called tag(0), specify the “type” of data
contained in ST(0).

§ Tag(i) specify the “type” of data contained in ST(i) for
i=0..7

§ The 2-bit value of tag(i) indicates the following about the
content of ST(i):
00 : st(i) contains a valid number
01 : st(i) contains zero
10 : st(i) contains NaN or infty
11 : st(i) is empty

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 28

Special-Purpose Registers

• Opcode register: stores opcode of last noncontrol
instruction executed

• Control register: controls precision and rounding
method for calculations

• Status register: top-of-stack pointer, condition
codes, exception warnings

• Tag register: indicates content type of each
register in the register stack

• Last instruction pointer register: pointer to last
non-control executed instruction

• Last data (operand) pointer register: points to
data operand used by last executed instruction

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 29

Rounding

• FPU attempts to round an infinitely accurate result
from a floating-point calculation

• may be impossible because of storage limitations

• Example

• suppose 3 fractional bits can be stored, and a
calculated value equals +1.0111.

• rounding up by adding .0001 produces 1.100
• rounding down by subtracting .0001 produces 1.011

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 30

Floating-Point Exceptions

• Six types of exception conditions
• Invalid operation
• Divide by zero
• Denormalized operand
• Numeric overflow
• Inexact precision

• Each has a corresponding mask bit
• if set when an exception occurs, the exception is handled

automatically by FPU
• if clear when an exception occurs, a software exception

handler is invoked

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 31

FPU Instruction Set

• Instruction mnemonics begin with letter F

• Second letter identifies data type of memory operand
• B = bcd instruction ex: FBLD
• I = integer instruction ex: FILD
• no letter: floating point instruction ex: FLD

• Examples
• FBLD load binary coded decimal
• FISTP store integer and pop stack
• FMUL multiply floating-point operands

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 32

FPU Instruction Set
• Operands

• zero, one, or two

• no immediate operands

• no general-purpose CPU registers (EAX, EBX, ...)

• integers must be loaded from memory onto the stack
and converted to floating-point before being used in
calculations

• if an instruction has two operands, one must be a FPU
register

33

Data allocation directives
§ Single-Precision: Use the REAL4 or DD directive to allocate 32 bits

of storage for a floating point number and store a value according to
the IEEE-754 standard. Ex:

spno REAL4 1.0 ; spno = 3F800000h

§ Double-Precision: Use the REAL8 or QWORD or DQ directive to
allocate 64 bits of storage and store a IEEE double precision value.
Ex:

dpno REAL8 1.0 ; dpno = 3FF0000000000000h

§ Extended Double-Precision: Use the REAL10 or TBYTE or DT
directive to allocate 80 bits (Ten bytes) of storage and store a
floating point number according to Intel’s 80-bit extended precision
format. Ex:

epno REAL10 1.0 ; epno = 3FFF8000000000000000h

§ Exercise 3: Explain why value 1.0 is represented as above in single
precision, double precision, and extended precision.

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 34

FP Instruction Set
• Data Types

• Note that QWORD and TBYTE are integer data types,
not real data type.

• QWORD used for defining integers

• TBYTE used for defining packed BCD integers

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 35

Load Floating-Point Value

• FLD
• copies floating point operand from memory into the

top of the FPU stack, ST(0)

• Example

• Use
• FILD for loading integers
• FBLD for loading BCD integers

36

FPU Data Transfer Instructions
§ Use the FLD source instruction to

transfer data from a memory source onto
ST.

§ The mem operand can either be a real4,
real8, real10, a quad word, or a ten byte.

§ The data is converted from the IEEE
format to Intel’s extended precision
format during the data transfer to ST.

§ Example:
.data
A REAL8 4.78E-7
B REAL10 5.6E+8

.code
fld A
fld B

ST(0)

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

The FPU stack after
loading A and B

A

B

37

Data Transfer Instructions (cont.)
§ ST(n) can be used as an operand of FLD.

§ A CPU register cannot be an operand of FLD

§ In that case FLD ST(n) copies the content of ST(n) onto ST.

§ Example: If we now execute FLD ST(1) after the previous
instructions. We get the following FPU stack:

ST(0)

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

A

B

A

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 38

Store Floating-Point Value

• FST
• copies floating point operand from the top of the FPU

stack into memory
• FSTP

• pops the stack after copying

• Use
• FIST (FISTP) for storing as integers
• FBST (FBSTP) for storing as BCD integers

39

Data Transfer Instructions (cont.)
§ The FST destination instruction

can be used to transfer data from ST
to a memory destination.

§ The mem operand can either be 32
bits, 64 bits, or 80 bits.

§ The CPU and FPU are executing
concurrently

§ This is why we normally cannot
directly transfer data between CPU
registers and FPU registers

§ When the FPU transfers data onto
memory that is to be manipulated by
the CPU, we should instruct the CPU
to wait that the FPU completes the
data transfer.

§ Example:
.data

float1 REAL4 1.75
result DWORD ?

.code
fld float1
...FPU inst...
fist result
FWAIT
mov eax,result

§ FWAIT tells the CPU to wait
that the FPU finishes the
instruction just before FWAIT

§ If FWAIT is not used, EAX
may not contain the result
returned by the FPU !!

40

Data Transfer Instructions (cont.)
§ ST(n) can be used as operand of FST.

Ex:
fst st(3); copies ST to ST(3)

§ FST does not change ST

§ But FSTP destination copies ST
onto destination and pops ST

§ FSTP also permits a 80-bit mem
operand

§ Example:
fld A
fld B
fld C
fstp result
finit ;clears stack

ST(0)

ST(1)

ST(2) A

B

C

Before fstp result

ST(0)

ST(1)

ST(2)
A

B

After fstp result

After finit

ST(0)

ST(1)

ST(2)

41

Data Transfer Instructions (cont.)
§ The FXCH instruction swaps the content of two registers. It can be

used either with zero or one operand.

§ If no operands are used, FXCH swaps the content of ST and ST(1)

§ If one operand is used, then it must be ST(n). Example:
fld A
fld B
fld C
fxch ST(2) ; FXCH swaps the content of ST and ST(2)

ST(0)

ST(1)

ST(2) A

B

C

Before fxch ST(2)

ST(0)

ST(1)

ST(2)

A

B

C

After fxch ST(2)

42

IEEE Format Conversion
§ The FLD source instruction loads a memory floating point value

onto ST in an extended 80 bit format regardless of whether source is
a single precision, double precision, or extended precision floating
point value

§ The FST[P] destination instruction stores ST into memory
regardless of whether destination is 32, 64, or 80 bits

§ Hence we can convert from one format to another simply by pushing
onto and popping from the FPU stack. Ex:

.data
Adouble REAL8 –7.77E-6 ; double-precision value
Afloat REAL4 ? ; single-precision value

.code
FLD Adouble ; double to extended precision
FSTP Afloat ; extended to single precision

43

Integer-to-Floating Point Conversion
§ To convert from integer to floating point format we can use the FILD

instruction. Ex:
.data
A DWORD 5

.code
FILD A ; Stores 5.0 on ST(0)

§ To convert from floating point to integer format we can use the FIST
instruction. Ex:

.data
A REAL4 5.64
B DWORD ?

.code
FLD A ; stores 5.64 on ST(0)
FIST B ; stores 6 in variable B

§ The FIST instruction takes the floating point value in ST(0) and
rounds it to an integer before storing it in the destination operand.
§ By default, the rounding method used is “round to the nearest” (but

this can be changed by the programmer)

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 44

Floating-Point I/O
• Irvine32 library procedures

• ReadFloat
• reads FP value from keyboard, pushes it on the FPU

stack. Accept the following formats:
– 35, +35., -3.5, .35, 3.5E5, 3.5E005,
– -3.5E+5, 3.5E-4, +3.5E-4

• WriteFloat
• writes value from ST(0) to the console window in

exponential format

• ShowFPUStack
• displays contents of FPU stack

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010.
45

Arithmetic Instructions
• Same operand types as FLD and FST

• All of these instructions have their FIXXX counterparts except
FCHS. Example: FIDIVR, …

• They can have up to two operands as long as one of them is a
FPU register.
• CPU registers are not allowed as operands
• A memory operand must be 32, or 64 bits
• Memory-to-memory operations are not allowed.
• Several addressing modes are provided.

46

Addressing Modes for Arithmetic Instructions

§ Keyword XXX may be one of:
§ ADD : add source to destination
§ SUB : subtract source from destination D = D - S
§ SUBR : subtract destination from source D = S - D
§ MUL : multiply source into destination
§ DIV : divide destination by source D = D / S
§ DIVR : divide source by destination D = S / D

§ The result is always stored into the destination operand
§ Operands surrounded by {…} are implicit operands: not coded

explicitly, by the programmer, in the instruction

Addressing Mode Mnemonic Dest, Source Example
Classical Stack FXXX {ST(1), ST} FADD
Register (form 1) FXXX ST(n), ST FMUL ST(1),ST
Register (form 2) FXXX ST, ST(n) FDIV ST,ST(3)
Register + pop FXXXP ST(n), ST FADDP ST(2),ST
Memory F[I]XXX {ST}, mem FDIVR varA

47

Classical Stack Addressing Mode
§ The classical stack addressing mode is invoked when we use FXXX

without operands.
§ ST is the implied source operand
§ ST(1) is the implied destination operand

§ The result of the instruction is temporarily stored into ST(1) and then
the stack is popped. Hence, ST will then contain the result. Example:
FLD A
FLD B
FLD C
FSUB ;st(1) = st(1) – st(0) = B-C

§ Note: ST(0) would contain C-B if FSUBR was used instead
ST(0)

ST(1)

ST(2) A

B

C

Before FSUB

ST(0)

ST(1)

ST(2)
A

B - C

After FSUB

48

Register Addressing Mode
§ Uses explicitly two registers as operands where one of them must

be ST.

§ ST can either be the source or the destination operand, so two forms
are permitted: ST, ST(n) or ST(n), ST.

§ In fact, both operands can be ST.

§ The stack is not popped after the operation. Ex:
FLD A
FLD B
FLD C
FMUL ST(2),ST ;st(2) = st(2) * st(0) = A*C

ST(0)

ST(1)

ST(2) A

B

C

Before FMUL st(2),st

ST(0)

ST(1)

ST(2)
B

C

After FMUL st(2),st
A x C

49

Register + Pop Addressing Mode
§ Uses explicitly two registers as operands.
§ The source operand must be ST and the destination operand must

be ST(n) where n must be different from 0.

§ The result of the operation is first stored into ST(n) and then the
stack is popped (so the result is then in ST(n-1). Ex:

FLD A
FLD B
FLD C
FMULP ST(2),ST ;st(2) = st(2) * st(0) = A*C

;then pop st(0) is popped,
;hence st(1) = A*C, in the end

ST(0)

ST(1)

ST(2) A

B

C

Before FMULP st(2),st

ST(0)

ST(1)

ST(2)

B

After FMULP st(2),st

A x C

50

Memory Addressing Mode
§ ST is an implicit destination

operand

§ The source operand is either a
32, or a 64 bit memory operand

§ Here is an example program that
computes the area of a circle

INCLUDE Irvine32.inc

.data
pi REAL4 3.14159
radius REAL4 2.0
area REAL4 ?

.code
main PROC

fld pi
fld radius
fmul radius ;mem addr.

; ST = radius*radius
; ST(1) = pi

fmul ; ST = area
call WriteFloat

; display area
exit

main ENDP
END main

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 51

Floating-Point Add

• FADD
• adds source to destination
• No-operand version pops the FPU

stack after subtracting
• Examples:

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 52

Floating-Point Subtract

• FSUB
• subtracts source from destination.
• No-operand version pops the FPU

stack after subtracting

• Example:

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 53

Floating-Point Multiply

• FMUL
• Multiplies source by

destination, stores product in
destination

• FDIV
• Divides destination by source,

then pops the stack

The no-operand versions of FMUL and FDIV pop the
stack after multiplying or dividing.

54

Arithmetic with an Integer
§ The memory addressing mode also supports an integer

for its explicit operand.
§ The arithmetic instruction must now be FIXXX
§ The single operand must be either 16 or 32
bits integer

.data
five DWORD 5 ; an integer
my_float REAL4 3.3 ; a floating point

.code
…
fld my_float ; ST = 3.3
fimul five ; ST = 16.5
fiadd five ; ST = 21.5

55

Exercise 4
§ Suppose that we have the following FPU stack content

before each instruction below:

ST(0) = 1.1, ST(1) = 1.2, ST(2) = 1.3, and the
rest of the FPU stack is empty.

Give the stack content after the execution of each
instruction:

§ fstp result ; result is a dword variable
§ fdivr st(2),st
§ fmul
§ fsubrp st(1),st
§ fadd
§ fdivp st,st(1)

56

Other FPU Instructions

Instruction Description
FABS Convert ST to positive
FCHS Change the sign of ST
FSQRT Compute SQRT of ST
FSIN Compute SIN of ST
FCOS Compute COS of ST

These instructions use ST as an
Implicit operand and store the result
back into ST:

These instructions push
a constant onto ST:

For more instructions see Intel’s Documentation at:
http://www.intel.com/design/litcentr/index.htm
In particular, see Intel’s Architecture Software Developer’s Manual Vol. 1 & 2

Example: Finding the roots of a
quadratic equation using:

a
acbb

2
42 −±−

Instruction Constant
FLDZ "+0.0"
FLD1 "+1.0"
FLDPI Pi
FLDL2T LOG_2(10)
FLDL2E LOG_2(e)
FLDLG2 LOG_10(2)
FLDLN2 LOG_e(2)

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 57

Comparing FP Values

• FCOM instruction
• Operands:

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 58

FCOM

• Condition codes set by FPU
• codes similar to CPU flags

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 59

Branching after FCOM

• Required steps:
1. Use the FNSTSW instruction to move the FPU status

word into AX.
2. Use the SAHF instruction to copy AH into the

EFLAGS register.
3. Use JA, JB, etc to do the branching.

Fortunately, the FCOMI instruction does steps 1 and
2 for you.

fcomi ST(0), ST(1)

jnb Label1

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 60

Comparing for Equality

• Calculate the absolute value of the difference
between two floating-point values

.data
epsilon REAL8 1.0E-12 ; difference value
val2 REAL8 0.0 ; value to compare
val3 REAL8 1.001E-13 ; considered equal to val2

.code
; if(val2 == val3), display "Values are equal".

fld epsilon
fld val2
fsub val3
fabs
fcomi ST(0),ST(1)
ja skip
mWrite <"Values are equal",0dh,0ah>

skip:

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 61

Exception Synchronization

• Main CPU and FPU can execute instructions concurrently
• if an unmasked exception occurs, the current FPU

instruction is interrupted and the FPU signals an exception
• But the main CPU does not check for pending FPU

exceptions. It might use a memory value that the interrupted
FPU instruction was supposed to set.

• Example:

.data
intVal DWORD 25
.code
fild intVal ; load integer into ST(0)
inc intVal ; increment the integer

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 62

Exception Synchronization

• (continued)
• For safety, insert a fwait instruction, which tells the CPU to

wait for the FPU's exception handler to finish:

.data
intVal DWORD 25
.code
fild intVal ; load integer into ST(0)
fwait ; wait for pending exceptions
inc intVal ; increment the integer

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 63

FPU Code Example

expression: valD = –valA + (valB * valC).

.data
valA REAL8 1.5
valB REAL8 2.5
valC REAL8 3.0
valD REAL8 ? ; will be +6.0

.code
fld valA ; ST(0) = valA
fchs ; change sign of ST(0)
fld valB ; load valB into ST(0)
fmul valC ; ST(0) *= valC
fadd ; ST(0) += ST(1)
fstp valD ; store ST(0) to valD

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 64

Mixed-Mode Arithmetic

• Combining integers and reals.
• Integer arithmetic instructions such as ADD and MUL cannot

handle reals
• FPU has instructions that promote integers to reals and load

the values onto the floating point stack.
• Example: Z = N + X
.data
N SDWORD 20
X REAL8 3.5
Z REAL8 ?
.code
fild N ; load integer into ST(0)
fwait ; wait for exceptions
fadd X ; add mem to ST(0)
fstp Z ; store ST(0) to mem

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 65

Masking and Unmasking Exceptions

• Exceptions are masked by default
• Divide by zero just generates infinity, without halting the

program
• If you unmask an exception

• processor executes an appropriate exception handler
• Unmask the divide by zero exception by clearing bit 2:

.data
ctrlWord WORD ?
.code
fstcw ctrlWord ; get the control word
and ctrlWord,1111111111111011b ; unmask divide by zero
fldcw ctrlWord ; load it back into FPU

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 66

The End

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 67

x86 Instruction Encoding

• x86 Instruction Format
• Single-Byte Instructions
• Move Immediate to Register
• Register-Mode Instructions
• x86 Processor Operand-Size Prefix
• Memory-Mode Instructions

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 68

x86 Instruction Format

• Fields
• Instruction prefix byte (operand size)
• opcode
• Mod R/M byte (addressing mode & operands)
• scale index byte (for scaling array index)
• address displacement
• immediate data (constant)

• Only the opcode is required

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 69

x86 Instruction Format

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 70

Single-Byte Instructions

• Only the opcode is used
• Zero operands

• Example: AAA
• One implied operand

• Example: INC DX

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 71

Move Immediate to Register

• Op code, followed by immediate value
• Example: move immediate to register
• Encoding format: B8+rw dw

• (B8 = opcode, +rw is a register number, dw is the
immediate operand)

• register number added to B8 to produce a new opcode

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 72

Register-Mode Instructions

• Mod R/M byte contains a 3-bit register number for
each register operand
• bit encodings for register numbers:

• Example: MOV AX, BX

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 73

x86 Operand Size Prefix

• Overrides default segment attribute (16-bit or 32-bit)
• Special value recognized by processor: 66h
• Intel ran out of opcodes for x86 processors

• needed backward compatibility with 8086
• On x86 system, prefix byte used when 16-bit

operands are used

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 74

x86 Operand Size Prefix

• Sample encoding for 16-bit target:

• Encoding for 32-bit target:

overrides default
operand size

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 75

Memory-Mode Instructions

• Wide variety of operand types (addressing modes)
• 256 combinations of operands possible

• determined by Mod R/M byte
• Mod R/M encoding:

• mod = addressing mode
• reg = register number
• r/m = register or memory indicator

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 76

MOV Instruction Examples

• Selected formats for 8-bit and 16-bit MOV
instructions:

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 77

Sample MOV Instructions

Assume that myWord is located at offset 0102h.

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 78

Summary

• Binary floating point number contains a sign,
significand, and exponent
• single precision, double precision, extended precision

• Not all significands between 0 and 1 can be
represented correctly
• example: 0.2 creates a repeating bit sequence

• Special types
• Normalized finite numbers
• Positive and negative infinity
• NaN (not a number)

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 79

Summary - 2

• Floating Point Unit (FPU) operates in parallel with
CPU
• register stack: top is ST(0)
• arithmetic with floating point operands
• conversion of integer operands
• floating point conversions
• intrinsic mathematical functions

• x86 Instruction set
• complex instruction set, evolved over time
• backward compatibility with older processors
• encoding and decoding of instructions

Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 80

The End

