Name:

In the name of God
Department of Physics
Shahid Beheshti University

ADVANCED TOPICS IN STATISTICAL PHYSICS II

Final exam

(Time allowed: 3 hours)

NOTE: All question must be answered. Legibility, good hand-writing and penmanship have 5 additional marks. Please write the answer of each question in separate sheet.

1. Suppose a particle governed by so-called Langevin equation as follows:(20 marks)

$$
\dot{v}(t)=\xi v(t)+\eta(t)
$$

and $\left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle=2 g \delta\left(t-t^{\prime}\right)$ compute:
A: $v(t)$
B: $\left\langle v(t)^{2}\right\rangle$
$\mathbf{C}:\left\langle v(t) v\left(t^{\prime}\right)\right\rangle$
$\mathbf{D}:\left\langle x(t) x\left(t^{\prime}\right)\right\rangle$
2. Show the equivalence between Forward and Backward Kramers-Moyal expansion. (10 marks).
3. For two interacting particles in an external potential as:

$$
\begin{array}{ll}
\dot{x}_{1}=v_{1} ; & \dot{v}_{1}=-\gamma_{1} v_{1}-f_{e x t}\left(x_{1}\right)-\frac{m_{1}+m_{2}}{m_{1}} \frac{\partial}{\partial x_{1}} f_{i n t}\left(x_{1}-x_{2}\right)+\Gamma_{1} \\
\dot{x}_{2}=v_{2} ; & \dot{v}_{2}=-\gamma_{2} v_{2}-f_{e x t}\left(x_{2}\right)-\frac{m_{1}+m_{2}}{m_{2}} \frac{\partial}{\partial x_{2}} f_{i n t}\left(x_{1}-x_{2}\right)+\Gamma_{2}
\end{array}
$$

here Γ_{1} and Γ_{2} are Langevin forces and $\left\langle\Gamma_{1}(t) \Gamma_{1}\left(t^{\prime}\right)\right\rangle=2 g_{1} \delta\left(t-t^{\prime}\right)$ and $\left\langle\Gamma_{2}(t) \Gamma_{2}\left(t^{\prime}\right)\right\rangle=2 g_{2} \delta\left(t-t^{\prime}\right)$. Write down Fokker-Planck equation for joint probability distribution function, $p\left(x_{1}, v_{1} ; x_{2}, v_{2} ; t\right)(15$ marks $)$.
4. Using the transformation of variables, show that Fokker-Planck equation in the new coordinate is (20 marks):

$$
\left(\frac{\partial p\left(x^{\prime}, t^{\prime}\right)}{\partial t}\right)_{x^{\prime}}=\left(-\frac{\partial}{\partial x_{k}^{\prime}} D_{k}^{\prime(1)}+\frac{\partial^{2}}{\partial x_{k}^{\prime} \partial x_{r}^{\prime}} D_{k r}^{\prime(2)}\right) p\left(x^{\prime}, t^{\prime}\right)
$$

where:

$$
\begin{gathered}
D_{k}^{\prime(1)}=\left(\frac{\partial x_{k}^{\prime}}{\partial t}\right)_{x}+\frac{\partial x_{k}^{\prime}}{\partial x_{i}} D_{i}^{(1)}+\frac{\partial^{2} x_{k}^{\prime}}{\partial x_{i} \partial x_{j}} D_{i j}^{(2)} \\
D_{k r}^{\prime(2)}=\frac{\partial x_{k}^{\prime}}{\partial x_{i}} \frac{\partial x_{r}^{\prime}}{\partial x_{j}} D_{i j}^{(2)}
\end{gathered}
$$

