In the name of God

Department of Physics Shahid Beheshti University

CRITICAL PHENOMENA

Exercise Set 3

(Due Date: 1401/08/20)

- 1. Response function: Suppose that $\mathcal{H} = \bar{\mathcal{H}}(\{S\}) + \sum_i H_i S_i$
 - **A**: Show that $G(i,j) = \frac{1}{\beta} \frac{\partial}{\partial H_i} \left(\frac{1}{Z\beta} \frac{\partial Z}{\partial H_j} \right)$. Explain the meaning of this quantity. **B**: Write down the $\sum_{ij} G(i,j)$ using partition function.

 - C: Suppose that for Homogeneous case $G(R) = \frac{1}{R^{\sigma}} f(R/\xi)$. Derive the susceptibility in d-Dimension.
- **2.** Mean field theory: Show that $F^{\text{mean-field}} \geq F$ for Ising model. What about $T_c^{\text{mean-field}}$ and T_c .
- 3. Mean field theory: Incorporating the correction up to $\mathcal{O}(\delta s^3)$, derive the effective magnetic field at location of s_i .
- 4. Show that the coefficient of M^2 in thermodynamical free energy, $f=a+btM^2+cM^4+\dots$ is related to correlation length scale (ξ) , namely $bt\sim \xi^{-2}$. What can we result?

Good luck, Movahed		