In the name of God

Department of Physics Shahid Beheshti University COMPUTATIONAL PHYSICS

Second midterm exam

(Time allowed: 3 hours)

NOTE: Send your programs, plots and results to movahedsadegh [at] gmail.com and amitida3513 [at] gmail.com

1. For a random walk in $1 D$, suppose the probability of jumping value is given by:

$$
p(s)=\frac{1}{5.4}\left(\frac{\cosh (s)}{(s+10)^{2}}+\tanh (s)\right)^{2}
$$

for $s \in[-4,+4]$.

A: Compute $\langle x(t)\rangle$ and $\sigma_{x}^{2}(t)$ and plot them versus t. (10 points)
B: Compare your theoretical results derived in the above part with the numerical simulation results. (Hint: You should use a proper method to generate value for jumping (s) whose PDF is the same as above probability function) (20 points)
C: Compute $M_{n}(s)$ for $n=3,5$ and $\mathcal{K}_{n}(s)$ for $n=3,4,5$. (10 points)
2. Non-linear Langevin equation: Suppose that

$$
\frac{d}{d t} \ln v(t)^{-1}=v(t) \eta(t)
$$

where $\langle\eta(t)\rangle=0,\left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle=\delta_{D}\left(t-t^{\prime}\right)$ and $p(\eta)=\mathcal{N}(0,1)$.
A: Compute $\langle v(t)\rangle$ and $\left\langle v(t) v\left(t^{\prime}\right)\right\rangle$ for $\tau=\left|t^{\prime}-t\right|$. (Hint: $v(t=0)=0.1$) (20 points)
B: Compute the PDF of the local extrema (peaks and troughs) of $v(t)$ and the un-weighted TPCF of local maxima for a generated $v(t)$ for $t \in[1000,10000]$. Is it possible to generalize your results for any arbitrary time intervals? Why? (20 points)

Good luck, Movahed

