In the name of God

Department of Physics Shahid Beheshti University

ADVANCED COURSE ON COMPUTATIONAL PHYSICS AND OPTIMIZATION

Exercise Set 6

(Due Date: 1403/02/20)

Random walk:

For random walk in $1 D$, compute $\langle x(N)\rangle$ and σ_{N}^{2} for following cases:
A: Suppose each steps coming form random variable with flat PDF.
B: Suppose the probability of step value is a gaussian and to be random, namely: $P(s)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{s^{2}}{2 \sigma^{2}}\right)$.
Suppose $\sigma=0.1,1,10$.
C: Suppose the probability of step value is $p(s) \sim \tanh (s) / s$ and $s \in[-4,4]$ to be random. The probability of forward jumping is $p_{+}=0.3$ and probability of backward jumping is $p_{-}=0.7$.
D: According to violin plot, plot the $\langle x(t)\rangle$ for $t=10, t=100$ and $t=1000$. Explain your results.
E: According to violin plot, plot the $\sigma(t)$ for $t=10, t=100$ and $t=1000$. Explain your results.
F: Using $p(x(t))$ compute the $p\left(\sigma^{2}(t)\right)$ and compare your results with that of illustrated in part \mathbf{D} and E .

Langevin particle:

Simulate a particle based on Langevin equation and then compute:
A: $\langle v(t)\rangle$.
B: $\left\langle v(t)^{2}\right\rangle$.
C: $\left\langle v\left(t_{1}\right) v\left(t_{2}\right)\right\rangle$.
D: $\langle x(t)\rangle$.
$\mathbf{E}:\left\langle x(t)^{2}\right\rangle$.
$\mathbf{F}:\left\langle x\left(t_{1}\right) x\left(t_{2}\right)\right\rangle$.
G: $p(v)$.
H: Compare all of above parts with theoretical predictions.
I: $p(v(t) ; v(t+\tau))$. What happens if $\tau \rightarrow \infty$.

Good luck, Movahed

