In the name of God

Department of Physics Shahid Beheshti University

ADVANCED COURSE ON COMPUTATIONAL PHYSICS AND OPTIMIZATION

Exercise Set 4

(Due Date: 1403/02/05)

- 1. Discretization: Use the "dataprofile.txt" and compute the derivative of signal with 3-point, 5-point, 7-point and 9-point neighbors in central difference formula (CDF). Compare your results. Hint: in the class I taught 3-point and 5-point central difference formula.
- 2. Implicit and Explicit methods for solving differential equation:
 A: Suppose that f' ≡ df(x)/dx = f²(x) and step size Δx = 0.5 and f(x = 1) = 1. Use explicit and implicit approaches to compute f(x). Compare your results.
 B: Suppose that f' ≡ df(x)/dx = -f(x) and step size Δx = 0.5 and f(x = 1) = 1. Use explicit and implicit approaches to compute f(x). Compare your results.
- 3. Using Euler and RF4 methods, solve following initial value problem:

$$y''(t) + ay'(t) + \omega^2 y(t) = \cos(\omega_1 t)$$

with y(0) = A, y'(0) = 0 and take any arbitrary values for other free parameters.

- 4. Using iterative relaxation method try to solve equation mention in above question. Compare your results.
- 5. For previous equation, use finite difference method to solve y as a function of t. Suppose the $t_{initial} = 0$ and $t_{final} = 10$ with N = 1000. Compare your result with results given in two previous questions.
- 6. Solve Laplace's equation $(\nabla^2 \Phi(x, y) = 0)$ numerically for a 2D area with 300×300 pixels. Suppose that $\Phi(0, y) = y^2$, $\Phi(x, 0) = x$, $\Phi(L, y) = 0$ and $\Phi(x, L) = 1$ (relaxation method or finite difference method)

Good luck, Movahed