In the name of God

Department of Physics Shahid Beheshti University

SELECTED TOPICS COURSE

Exercise Set 3

1. For a smoothed stochastic filed expand $\langle F \rangle$ around $\langle F \rangle_G$ up to $\mathcal{O}(\sigma_0^4)$.

- **2.** Suppose that $F \equiv \delta_D(\alpha \nu)$. So write a perturbative expansion of $\langle F \rangle$ up to $\mathcal{O}(\sigma_0^3)$ in 1-Dimension.
- **3.** For a given (1 + 1)-D Gaussian signal, calculate $\langle n_{up}(\nu) \rangle = \langle \delta(x \alpha)\Theta(\eta)\eta \rangle$. Suppose that $\langle x\eta \rangle = 0$ and $\langle \eta\eta \rangle = \sigma_1$. Derived the non-Gaussian part up to $\mathcal{O}(\sigma_0^2)$.
- 4. Using data set (0.2.txt, 0.5.txt and 0.8.txt), compute up-crossing statistics as a function of threshold, α .
- 5. Bias definition: The relation between Unweighted TPCF and weighted TPCF can be considered as:

$$\Psi_{fg}(R) = \mathcal{B}_{fg}C(R)$$

- (a) For Up-crossing feature determine \mathcal{B} for 1+1-D stochastic field.
- (b) For a sharp clipping feature, we have $f \equiv A\Theta(\alpha \vartheta)$. Here A is a normalization coefficient. The average value of sharp clipping in a Gaussian random field can be written by:

$$\langle f(\alpha) \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} A\Theta(\alpha - \vartheta) e^{-\alpha^2/2} d\alpha$$

Now, we expand $\Theta(\alpha - \vartheta)$ in terms of Hermite polynomials defined by $H_n = e^{x^2/2} (d/dx)^n e^{-x^2/2}$ with $\langle H_n(x) H_m(x) \rangle \delta_{nm} m!$. Therefore we have

$$A\Theta(\alpha) = \sum_{k=0}^{\infty} \frac{J_k}{k!} H_k(\alpha)$$

Show that

$$J_k = \frac{\vartheta H_{k-1}(\vartheta)}{\vartheta \sqrt{\pi/2} \exp(\vartheta^2/2) \operatorname{erfc}(\vartheta/\sqrt{2})}$$

- (c) Show $\lim_{\vartheta \to \infty} J_k = \vartheta^k$
- (d) Show $\langle \Theta(\alpha(r))\Theta(\alpha(r'))\rangle = 1 + \Psi(R) = \sum_{k=0}^{\infty} \frac{J_k^2}{k!} C_{\alpha\alpha}^k(R)$, where R = |r r'|.
- (e) For $R \to \infty$ show $\langle \Theta(\alpha(r))\Theta(\alpha(r')) \rangle = 1 + \Psi(R) \sim J_1^2 C_{\alpha\alpha}(R)$. Here $J_1 = \vartheta^2$.
- 6. For a smoothed stochastic filed expand the *cmd* measure up to $\mathcal{O}(\sigma_0^4)$. Also do for various *n*. (see https://arxiv.org/abs/2308.03086)

Good luck, Movahed