

مقدمات درس روشهاى شبيه سازى در فيزيك (نظريه و محاسبات) Preliminaries for Advanced topics in computational Physics and Optimization

سـيلمـحملصـادق موحد
دانشككه فيزيك دانشكاه شهيد بهشتى
كروه كيهانثناسىى محاسباتى و آزمايشكاه ابن سينا
نيم سال دوم، سال تحصيلى r.r-MF.r
ccg.sbu.ac.ir smovahed.ir

COMPLEXLAB SHAHID BEHESHTIUNIVERSITY

http://facultymembers.sbu.ac.ir/movahed/

\section*{SHAHID BEHESHTI UNIVERSITY

Department of Pryasica

}
About Me

Tomb of Cyrus the great (Pasargadae, IRAN)

smovahed.ir

The timetable of Course طرح درس و برنامه زمانبندى

smovahed.ir

Some relevant references in my webpage
برخى از منابع مندرج در وبسايت درس

smovahed.ir

Simulation and Data Sciences
شبيه سـازى و علم داده

smovahed.ir

Optimization: General view بيينه سازی: نكاه كلى

smovahed.ir

Generic examples

I) Common notion in everyday life
2) Shortest path
3) Euler-Lagrange differential equation
4) Variational approach to compute the upper limit of ground state of a typical system
5) Many physical systems are governed by minimization principle (Gravity,
Thermodynamics, ...)

Transformation into the optimization problems

I) Determination of the self affine properties of polymers in random media
2) Study of interfaces and elastic manifolds in disordered environments
3) Investigation of the low-temperature behavior of disordered magnets
4) Investigation of morphology of fox line in superconductors
5) Solution of Protein Folding
6) Calculation of ground state of electronic systems
7) Optimization of laser fibers
8)
9)
10)

Canonical definition of Linear optimization

$$
\begin{aligned}
X= & \left(x_{1}, x_{2}, \ldots, x_{N}\right) \quad \text { a row vector } \\
& X \in R \\
& \mathcal{H} \subset R \quad \text { (cost function) }
\end{aligned}
$$

Find $\quad X \in R$ which minimizes or maximizes \mathcal{H}

Canonical definition of Linear optimization

$$
\begin{aligned}
X= & \left(x_{1}, x_{2}, \ldots, x_{N}\right) \quad \text { a row vector } \\
& C^{T} X \quad \text { To be minimized (cost function) } \\
& A X \leq B \quad \text { Constraints } \\
& X \geq 0 \quad \text { (con }
\end{aligned}
$$

مفهوم و جايكاه روشهاى بهيئه سازى

Some keywords:

- Feasible region: A set of value of X which fulfills or satisfies all conditions;
- Robustness: Resilience against perturbation;
- Complexity:Time and algorithms

Biswas,Anupam, et al. "Physics-inspired optimization algorithms: a survey." Journal of Optimization 2013 (2013).

Optimization Flowchart

https://mech.iitm.ac.in/meiitm/

Optimization Flowchart

A) Design variables

- Model building
- Observable quantities
- Prior informations

Optimization Flowchart

B) Constraints

- Geometry and topology
- Boundary conditions (periodic boundary,)

Optimization Flowchart

C) Objective Function (cost function)

- Posterior and Likelihood
- Hamiltonian
- Entropy
- Thermodynamic Potential
- Nature-inspired functions

Optimization Flowchart

D) Variable bounds

- Variable domains coming from theories or experiments

Optimization Flowchart

E) Optimization Algorithms

Physics-inspired algorithms

Biswas,Anupam, et al. "Physics-inspired optimization algorithms: a survey." Journal of Optimization 2013 (2013).

Physics-inspired algorithms

ACO:	Ant colony optimization	IGOA:	Immune gravitation inspired optimization
APO:	Artificial physics optimization		algorithm
BB-BC:	Big bang-big crunch	IQEA:	Improved quantum evolutionary algorithm
BFO:	Bacterial forging optimization	LP:	Linear programming Multiobjective gravit
BGSA:	Binary gravitational search algorithm	NLP:	Nonlinear programming
BIS:	Biological immune system	PSO:	Particle swarm optimization
BQEA:	Binary Quantum-inspired evolutionary algorithm	PSOGSA: QBSO:	PSO gravitational search algorithm Quantum-inspired bacterial swarming
CFO:	Central force optimization		optimization
CQACO:	Continuous quantum ant colony optimization	$\begin{aligned} & \text { QEA: } \\ & \text { QGA: } \end{aligned}$	Quantum-inspired evolutionary algorithm Quantum-inspired genetic algorithm
CSS:	Charged system search	QICA:	Quantum-inspired immune clonal algorithm
EAPO:	Extended artificial physics optimizatio	QPSO:	Quantum-behaved particle swarm
ECFO:	Extended central force optimization		optimization
EM:	Electromagnetism-like heuristic	QSE:	Quantum swarm evolutionary algorithm
GA:	Genetic Algorithm	RQGA:	Reduced quantum genetic algorithm
GbSA:	Galaxy-based search algorithm	TSP:	Travelling salesman problem
GIO:	Gravitational interaction optimization	UBB-CB	Unified big bang-chaotic big crunch
GSA:	Gravitational search algorithm	VM-APO:	Vector model of artificial physics
HO	Hysteretic optimization		optimization
HQGA:	Hybrid quantum-inspired genetic algor	vQEA:	Versatile quantum-inspired evolutionary algorithm.

Biswas,Anupam, et al. "Physics-inspired optimization algorithms: a survey." Journal of Optimization 2013 (20|3).

Examples

I) Traveling Salesman Problem (TSP)

$$
\begin{aligned}
X & =\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
& =\{1,2,3, \ldots, N\} \\
\mathcal{H}(X) & =\sum_{i=1}^{N} d\left(x_{i}, x_{i+1}\right) \\
x_{N+1} & =x_{1} \\
X & \rightarrow \hat{P}[1,2,3, \ldots, N]
\end{aligned}
$$

TSP Algorithm

I) Set the labels of each city to zero to clarify the times of visit
2) Starting from an arbitrary city
3) Traveling to another unvisited city This can be done either in deterministic or stochastic approaches
I) For each given starting point select next unvisited destination randomly
2) Check the conditions of our purpose

A,B,C,D
Exercise:Try to solve TSP according to following conditions:

- Visit twice C-City

A,B,D,C
C,D,B,A
D,C,B,A

- Visit necessarily C before D

Examples

2) Ising Spin Glasses

$$
\begin{aligned}
X & =\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\right) \\
& =\{1,2,3, \ldots, N\} \\
X & =\{-1,+1\} \\
\mathcal{H}(X) & =-\sum_{\langle i, j\rangle=1}^{N} J_{i j} \sigma_{i} \sigma_{j} \\
\sigma_{i} & = \pm 1, \quad \sigma_{i} / / \sigma_{i+1} \quad \text { for }^{\mathrm{ij}}>0 \\
\sigma_{i} & = \pm 1, \quad \sigma_{i} \nVdash \sigma_{i+1} \quad \text { for }_{\mathrm{ij}}<0
\end{aligned}
$$

Ferromagnetic and anti-Ferromagnetic frustrated states

Terminal: General properties

Look at the

http://facultymembers.sbu.ac.ir/movahed/attachments/Introduction\ to\ command\ Linux.pdf
http://facultymembers.sbu.ac.ir/movahed/attachments/computational_all.pdf

- Making alias and unalias (Local capability):

Example 1: Is \rightarrow show the list of content in the current location;
alias "list" instead of "Is"
Seyeds-MacBook-Pro-1047:~ sadegh\$ alias list="ls"
Seyeds-MacBook-Pro-1047:~ sadegh\$ unalias list
Example 2: making an alias to open a typical program

```
Seyeds-MacBook-Pro-1047:Desktop sadegh$ alias math="open
```

-a Mathematica"

Terminal: General properties

- Making alias and unalias (Global capability): nano (emacs) ~/.bashrc
alias texedit='open -a TextEdit'

to active new alias: source ~/.bashrc

some useful commands

http://facultymembers.sbu.ac.ir/movahed/attachments/computational_all.pdf rm $-r \longrightarrow$ delete a folder cp $-r \longrightarrow>$ copy folder mkdir - $\mathrm{p} \longrightarrow>$ create a folder (enforcement) rm -r ./*/ —> remove the folders inside the folder

Bash script

Some main questions:
I) What is the Bash script good for?
2) What is the Bash script itself?
3) How can make a Bash script?

What is the Bash script good for?

I) Making recipe;
2) Including different commends ranging from making a folder to call the compiler to compile and then run an executive program and so on;

Bash script: Structure

\#! (shebang (hashbang) character): Number sign+ exclamation sign

```
#!/usr/bin/env bash
    usr: Universal System Resources
i=0
num=100
for((i=1; i<=num; i++)); do
mkdir -p sadegh.${i}
name=sadegh.${i}
cp danial_story.jpg ${name}
echo ${name}
done
```


Bash script: Structure

\#! (shebang (hashbang) character): Number sign+ exclamation sign

```
#!/usr/bin/env bash
    usr:Universal System Resources
i=0
num=100
for((i=1; i<=num; i++)); do
mkdir -p sadegh.${i}
name=sadegh.${i}
cp danial_story.jpg ${name}
echo ${name}
done
```

To make an executive file: change the mode via chmod $u+x$ file.sh

Bash script: Example 2

Example 2: Make a bash script to do following tasks:
reading from a file and make associated folders and plot input data

Bash script: Example 2

Example 2: Make a bash script to do following tasks:
reading from a file and make associated folders and move a typical file to each created folder

```
#!/usr/bin/env bash
i=0
for name in `cat input` ; do
let "i=i+1"
C[i]=$name
echo $name
mkdir -p $name
cp danial_story.jpg ${name}
done
```


Bash script: Example 3

Example 3: Make a bash script to do following tasks:

1) We have 48 text file entitled I.txt to $48 . t x t$;
2) We have a file including the name of countries and we would like to assign each text file to the corresponding country's name in separated folders. Also we are going to select all available pairs (all combinations) $\frac{48!}{(2)!(48-2)!}=1128$
3) Move each two corresponding data to associated folder and plot the data in that folder

Bash script: Example 3

```
#!/usr/bin/env bash
i=0
for name in $(cat list_arrange); do
    let i=$i+1
    c[i]=$name
    #echo $name
done
let num=$i
for ((i=1; i<=$num; i++)); do
    let k=$i+1
    for ((j=$k; j<=$num; j++)); do
        mkdir -p ${c[i]}_${c[j]}
        cp $i.txt ${c[i]}_${c[j]}/${c[i]}.txt
        cp $j.txt ${c[i]}_${c[j]}/${c[j]}.txt
        echo ${c[i]}
        echo ${c[j]}
        cd ${c[i]}_${c[j]}
        python3.6 ../plot.py ${c[i]} ${c[j]}
        cd ..
    done
done
```


Bash script: Example 4

Example 4:Traveling Salesman Problem (TSP)

A,B,C,D
A,B,D,C
C,D,B,A
D,C,B,A


```
(base) Seyeds-MacBook-Pro-1047:example4_TSP sadegh$ gfortran TSP_random.f90
(base) Seyeds-MacBook-Pro-1047:example4_TSP sadegh$ ./a.out
6.481243
6.48 1 2 3 4
6.48 3 4 2 1
6.48 4 3 2 1
```


Bash script: Example 5

Bash script: Example 6

Sarmad

اطلاعيههاى كارگّامهاى آموزشى در حال برگّارى

سرمد

SBU CLUSTER

https://resevp.sbu.ac.ir/sarmad

Some useful commands

Example I: we are interested in copying a file from our machine to cluster scp ./plot.py m_movahed@192.168.220.100:/share/users/ m_movahed/TDA

Example 2: after finishing our program in the cluster, we want to move the results from cluster to our local machine
scp m_movahed@192.168.220.I00:/share/users/ m_movahed/TDA/plotl.py .

Notice: Use "tmux" when you are connected to cluster

Some useful commands: tmux command

I) Connecting to the cluster
2) In corresponding terminal type: tmux (pre-installed) to create a session
3) tmux LS (shows a list of sessions)
4) $\mathrm{CL}+\mathrm{b} \%$ (splitting vertically the terminal)
5) $\mathrm{CL}+\mathrm{b}$ " (splitting horizontally the terminal)
6) moving between different sessions
CL+b arrows (top, down, left, right)
7) Submitting a job and running a program
8) $\mathrm{CL}+\mathrm{b} \mathrm{d} \longrightarrow$ to Detach from session
9) tmux a -t <session-ID>
10) Exit (disconnecting from cluster)
II) To check our job connect to cluster, tmux LS, tmux a -t <session-ID>
12) To kill the session, tmux $a-t<s e s s i o n-I D>, C L+b:$
type kill-session

Some useful commands

Notice: Use "tmux" when you are connected to cluster after reconnecting use "tmux attach"

Example:

```
while true
do
sleep 1
echo "Hello Dear"
done
```

see the Pooyan's lectures for more details via http://ccg.sbu.ac.ir/resources/computers/

run your job on a cluster

I) It essentially needs to make the Bash scrip; (see the example)
2) Shell managing (terminal managing)

Number Representation

Error estimation and propagation

