Multi-Fractal Analysis

Seyed Mohammad Sadegh Movahed ${ }^{1,2}$
 ${ }^{1}$ Department of Physics-Shahid Beheshti Universiy
 ${ }^{2}$ School of Astronomy (IPM)
 http://faculties.sbu.ac.ir/~movahed

Workshop on Time series analysis - Sharif University of Technology
24 Tir (1389)

- Motivations

Outline

- A brief explanation about Self-similar and self-affine models
- Novel methods in multifractal analysis
- Relation between so-called Hurst exponent and other scaling exponent in 1 and 2 dimensions
- Trends and undesired noise in time series

1) Polynomial trends
2) Sinusoidal trends

- Detrending procedures: F-DFA, SVD and EMD
- Motivations

Outline

- A brief explanation about Self-similar and self-affine models
- Novel methods in multifractal analysis
- Relation between so-called Hurst exponent and other scaling exponent in 1 and 2 dimensions
- Trends and undesired noise in time series

1) Polynomial trends
2) Sinusoidal trends

- Detrending procedures: F-DFA, SVD and EMD
- Summary

Some relevant references

Some relevant references

- http://sharif.ir/~rahimitabar/
- http://faculties.sbu.ac.it/~movahed
- arXiv:0804.0747
- PRE, 74, 061104 (2006)
- Physica A 316, 87-114 (2002)
- PRE 71, 011104 (2005); arXiv:physics/0103018
- Physica A 357, 447-454 (2005); Physica A 354, 182-198 (2005); Chaos, Solitons and fractals 26, 777-784 (2005)
- PNAS, 104, 38 (2007)
- Physiol. Meas. 23 (2002) R1-R38

Glossary

A system consisting of many non-linear components.

One dimensional array representing value of an observable based on dynamical variable so-called time.

A power law function describing the behavior of a typical physical quantity.

A typical system which characterized by a scaling law with non-integer exponent in all scaling ranges. On the other hand, multifractal has infinite number of different fractal exponents.
 Each of them are valid in proper scaling range. system's parts in every directions have same scaling exponent for matching to whole of system. While self-affinity is a generalization for anisotropic scaling behavior.

Changing in the scaling behavior

The weak definition is concerned to changing the mean standard deviation of time series with time. Strong definition of stationarity requires that all moments remain constant. Usually external affects cause nonstationarity in time series.
Trend It is an intrinsically fitted monotonic function or a function in which there can be at most one extremum within a given data span. Detrending is the operation of removing trend

A brief History on Complex system science

A brief History on Complex system science

- ~1700 A.D. Gottfried leibniz
- ~1872 A.D. Karl Weierstrass
- ~1904 A.D. Helge von Koch
- ~1915 A.D. Waclaw Seirpinski
- ~1951 A.D. H. E. Hurst
- ~1968 A.D. B. B. Mandelbroat

Model construction

- To investigate the evolution of phenomena in the nature and probably track their future situations.
- It should be a simple from mathematical point of view.

Natural time series

- Geophysics time series: temperature, precipitation, water runoff, seismic events, climate dynamics and so on.
- Medical and physiological time series: Heartbeat, blood pressure, glucose level, gene expression data and so on.
- Astrophysical time series: X-ray and cosmic ray, sunspot, CMB (actually not time series),....
- Social and technical time series: Traffic, internet, Finance, language characteristics, chemistry a petroleum,
- Physics data: surface roughness, spectroscopy,
- Prediction of the future behavior of the systems
- Classification of various systems from complex systems point of view
- Find the universality properties of underlying systems

Multifractality in human

 heartbeat dynamicsPlamen Ch. Ivanov* ${ }^{+}$, Luis A. Nunes Amaral Ary L. Goldbergert, Shlomo Havlin \ddagger, Michael G. Rosenblums, Zbigniew R. Struzik - u c......- ©.-....... Avatable online at www solencedrect com

ScienceDirect PHYSCA
Ftyias A 350 (200m) $200-35$

Long range correlations in the heart rate variability following the injury of cardiac arrest

Shanbao Tong ${ }^{\text {a** }}$, Dineng Jiang", Ziming Wang", Yisheng Zhu ${ }^{\text {² }}$, Romeryko G. Geocadin ${ }^{\text {b }}$, Nitish V. Thakor ${ }^{\text {e }}$

Scaling and correlation in financial time series
P. Gopikrishnan² ${ }^{*}$, V. Plerour , Y. Liup, L.A.N. Amaral",
X. Gabaix ${ }^{\text {he }}$, H.E. Stanley ${ }^{\text {A }}$

 Recetwad 13 May 2000

Physica A 270 (1999) 309-324

PHYSICA

Statistical physics and physiology: Monofractal and multifractal approaches
H.E. Stanley ${ }^{\text {a, }, ~}$, L.A.N. Amaral ${ }^{\text {a.b }}$, A.L. Goldberger ${ }^{\text {b }}$, S. Havlin ${ }^{\text {a.c }}$, P.Ch. Ivanov ${ }^{\text {ab }}$, C.-K. Peng ${ }^{\text {b }}$
${ }^{2}$ Cotier for Polymer Stuties and Deparment of Physicx Baston Uniersity, Baston, MA 02215, USA Coter for Polymar Studier and Depariment of Physiox Baston Uniersity, Boston, MA 02215,
${ }^{\circ}$ Harrard Medical School. Beth Irael Deaconess Medical Center, Boston. MA 02215, USA 'Gonda Goldschmid Center and Depariment of Physics. Bar-Ilen Uniersity, Ramur Gam, Israet
Multifractal detrended fluctuation analysis of pressure fluctuation

Chemical Engineering Journal signals in an impinging entrained-flow gasifier
Miaoren Niu*. Fuchen Wane. Oinfeng Liang. Guanesuo Yu. Zunhone Yu

Music walk, fractal geometry in music

$$
\text { Zhi-Yuan Su }{ }^{\mathrm{a}} \text {, Tzuyin } \mathrm{Wu}^{\mathrm{b}, *}
$$

${ }^{2}$ Department of Information Manayement, Chia Nan University of Pharmacy \& Science, Tainan 717, Taivat, ROC
${ }^{\text {b }}$ Department of Mechanical Enghteering, National Taiwan Unitersity, Taupei IO6, Taiwan, ROC
Received 16 November 2006; received in revised form S Jan uary 2007

Statistical physics and physiology: Monofractal and multifractal approaches
H.E. Stanley ${ }^{\text {a, }}$, L.A.N. Amaral ${ }^{\text {a,b }}$, A.L. Goldberger ${ }^{b}$, S. Havlin ${ }^{\text {a,c }}$, P.Ch. Ivanov ${ }^{\mathrm{a}, \mathrm{b}}, \mathrm{C} .-\mathrm{K}$. Peng $^{\mathrm{b}}$
${ }^{2}$ Conter for Polymer Stuties and Depariment of Physicx Boston Unitersity, Baston, MA 02215, USA ${ }^{\text {b }}$ Harvard Medical School, Beth Irrael Deaconess Medical Center. Bostom. MA 02215, USA
'Gonda Goldschmid Center and Department of Physics. Bar-Ilar University. Ramar Gam, Israel

Problems and Discrepancies regarding to Observations and Models

Direct computation and determination

IIndirect computation and determination

Problems and Discrepancies regarding to Observations and Models

Direct computation and determination

Indirect computation and determination

Self-affinity in time series

- Suppose a time series as:

$$
y:\{y(i)\} \quad i=1, \ldots, N
$$

$$
i \rightarrow a \times i
$$

$$
y(a \times i)=a^{H} y(i)
$$

$$
y(i)=x(1)+x(2)+x(3)+\ldots+x(i)=i^{H} x(1)
$$

Classification of time series based on Hurst exponent

- Anti-correlated: $\mathrm{H}<0.5$
- Uncorrelated:
- Correlated:
$\mathrm{H}=0.5$
$\mathrm{H}>0.5$

Fractional Gaussian Noise

I

=

Fractional Brownian Motion

- Hurst' rescaled range (R/S) analysis : By Hurst (1951)
- Scaled windowed variance analysis (SWA) : By Mandelbort (1985)
- Dispersional analysis (Disp) : By Bassingthwaighte (1988)
- Detrended fluctuation analysis (DFA) : By Peng (1994)
- Some state-of-the-art algorithm based on previous idea such as: MF-DFA, MF-DCCA, MF-TWDFA, DMA (BDMA \& CDMA), WTMM

Detrending methods

- Parametric: Done in DFA
- Non-parametric: Empirical mode decomposition (EMD)

I must point out that now a days there are some challenge regarding to Detrending methods in multifractal analyses

Description and Application mentioned methods

- Part A: For stationary case without trends
(Part B: For non-stationary case with trends

SWV method

- Step 1. Determine the 'profile'

$$
Y(i) \equiv \sum_{k=1}^{i}\left[x_{k}-\langle x\rangle\right], \quad i=1, \ldots, N .
$$

- Step 2. Divide the profile $Y(i)$ into $N_{s} \equiv \operatorname{int}(N / s)$ non-overlapping segments of equal lengths s.

$$
\begin{aligned}
S W V(s)= & \left(\frac{1}{s} \sum_{i=1}^{s}[Y(i)-\langle Y(s)\rangle]^{r}\right)^{1 / r} \\
& S W V(s) \sim s^{H}
\end{aligned}
$$

R/S method

- Step 1. Determine the 'profile'

$$
Y(i) \equiv \sum_{k=1}^{i}\left[x_{k}-\langle x\rangle\right], \quad i=1, \ldots, N .
$$

- Step 2. Divide the profile $Y(i)$ into $N_{s} \equiv \operatorname{int}(N / s)$ non-overlapping segments of equal lengths s.

$$
\begin{aligned}
R(s)= & \operatorname{Max}\{Y(s)\}-\operatorname{Min}\{Y(s)\} \\
S(s)= & \left(\frac{1}{s} \sum_{i=1}^{s}[x(i)-\langle X\rangle]^{r}\right)^{1 / r}, s=1, \ldots, N \\
& R(s) / S \sim s^{H}
\end{aligned}
$$

Dispersional method

- Step 1. Determine the 'profile'

$$
Y(i) \equiv \sum_{k=1}^{i}\left[x_{k}-\langle x\rangle\right], \quad i=1, \ldots, N .
$$

- Step 2. Divide the profile $Y(i)$ into $N_{s} \equiv \operatorname{int}(N / s)$ non-overlapping segments of equal lengths s.

$$
\begin{aligned}
\mu(\nu, s) & =\frac{1}{s} \sum_{i=1}^{s} Y[(\nu-1) s+i] \\
\langle\mu(s)\rangle & =\frac{1}{N_{s}} \sum_{\nu=1}^{N_{s}} \mu(\nu, s) \\
M(s) & =\frac{1}{N_{s}} \sum_{\nu=1}^{N_{s}}[\mu(\nu, s)-\langle\mu(s)\rangle] \\
M(s) & \sim s^{2 H}
\end{aligned}
$$

Multi-Fractal Detrended

Fluctuation in ID

DFAm remove trend of order m in profile or trend of order $m-1$ in original seris

- Step 1. Determine the 'profile'

$$
Y(i) \equiv \sum_{k=1}^{i}\left[x_{k}-\langle x\rangle\right], \quad i=1, \ldots, N .
$$

- Step 2. Divide the profile $Y(i)$ into $N_{s} \equiv \operatorname{int}(N / s)$ non-overlapping segments of equal lengths s.
- Step 3. Calculate the local trend for each of the $2 N_{s}$ segments by a least squares fit of the series. Then determine the variance

$$
F^{2}(s, \nu) \equiv \frac{1}{s} \sum^{s}\left\{Y[(\nu-1) s+i]-y_{\nu}(i)\right\}^{2}
$$

for each segment $\nu, \nu=1, \ldots, N_{s}$, and

$$
F^{2}(s, \nu) \equiv \frac{1}{s} \sum_{i=1}^{s}\left\{Y\left[N-\left(\nu-N_{s}\right) s+i\right]-y_{\nu}(i)\right\}^{2},
$$

for $\nu=N_{s}+1, \ldots, 2 N_{s}$.
Here, $y_{\nu}(i)$ is the fitting polynomial in segment ν. Stop

- Step 4. Average over all segments to obtain the q th-order fluctuation function, defined as

$$
F_{q}(s) \equiv\left\{\frac{1}{2 N_{s}} \sum_{\nu=1}^{2 N_{s}}\left[F^{2}(s, \nu)\right]^{q / 2}\right\}^{1 / q}
$$

$F_{q}(s)$ is only defined for $s \geq m+2$.

- Step 5. Determine the scaling behaviour of the fluctuation functions by analysing $\log -\log$ plots of $F_{q}(s)$ versus s for each value of q. If the series x_{i} are long range power law correlated, $F_{q}(s)$ increases, for large values of s, as a power law,

$$
F_{q}(s) \sim s^{h(q)}
$$

$$
\begin{aligned}
& \{X\}:\left\{F_{q}(s)\right\} \quad\{\Theta\}:\{h(q)\} \\
& P(h(q) \mid X)=\frac{\mathcal{L}(X \mid h(q)) P(h(q))}{\int \mathcal{L}(X \mid h(q)) d h(q)} \quad \mathcal{L}(X \mid h(q)) \sim \exp \left(\frac{-\chi^{2}(h(q))}{2}\right) \\
& \chi^{2}(h(q))=\int d s \frac{\left[F_{\text {obs. }}(s)-F_{\text {The. }}(s ; h(q))\right]^{2}}{\sigma_{\text {obs. }}^{2}(s)} \\
& 68.3 \%=\int_{-\sigma^{-}}^{+\sigma^{+}} \mathcal{L}(X \mid h(q)) d h(q) \quad h_{-\sigma^{-}}^{+\sigma^{+}}
\end{aligned}
$$

Jan W. Kantelhart, et. al., arXiv:physics/0202070; M. Sadegh Movahed et. al., arXiv:physics/0508I49 S. Hajian and M. Sadegh Movahed, arXiv:0908.0I32

Yu Zhou and Yee Leung, JSTAT P0602I (2010)

$h(2)$ and Hurst exponent in DFAl for

 $f G n$$$
\begin{align*}
F^{2}(s) & \equiv \frac{1}{N_{s}} \sum_{v=1}^{N_{s}}\left[F^{2}(s ; v)\right] \\
& =\left\langle\left[F^{2}(s ; v)\right]\right\rangle_{v} \\
& \equiv \mathcal{C}_{H} S^{2 H} \\
F^{2}(s ; v) & =\frac{1}{s} \sum_{i=1}^{s}\left[Y_{v}(i)-y_{v}(i)\right]^{2} \\
Y(i) & =\sum_{k=1}^{i} x(k)-\langle x\rangle \\
y_{v}(i) & =a_{v}+b_{v} i
\end{align*}
$$

\[

\]

$$
\begin{aligned}
\sum_{i, j=1}^{s}\langle Y(i) Y(j)\rangle & =\frac{\sigma^{2}}{2} \sum_{i, j=1}^{s}\left(i^{2 H}+j^{2 H}-|i-j|^{2 H}\right) \\
& =\frac{\sigma^{2}}{2} \sum_{i, j=1}^{s}\left(i^{2 H}+j^{2 H}\right)-\sigma^{2} \sum_{i=1}^{s} \sum_{j=1}^{i}(i-j)^{2 H} \\
& \sim \sigma^{2}\left(\frac{s^{2 H+2}}{2 H+1}-\sum_{i=1}^{s} i^{2 H+1} \int_{0}^{1}(1-x)^{2 H}\right) \\
& \sim \sigma^{2} s^{2 H+2}\left(\frac{1}{2 H+1}-\frac{1}{(2 H+2)(2 H+1)}\right)
\end{aligned}
$$

$$
\begin{aligned}
F^{2}(s) & \equiv \frac{1}{N_{s}} \sum_{v=1}^{N_{s}}\left[F^{2}(s ; v)\right] \\
& =\left\langle\left[F^{2}(s ; v)\right]\right\rangle_{v} \\
& \equiv \mathcal{C}_{H} s^{2 H}
\end{aligned}
$$

$$
\mathcal{C}_{\mathcal{H}}=\frac{\sigma^{2}}{(2 H+1)}-\frac{4 \sigma^{2}}{2 H+2}+3 \sigma^{2}\left(\frac{2}{H+1}-\frac{1}{2 H+1}\right)-\frac{3 \sigma^{2}}{(H+1)}\left(1-\frac{1}{(H+1)(2 H+1)}\right)
$$

$$
h(q=2)=H
$$

M. S. Taqqu et. al., Fractals, Vol. 3, No. 4 (1995)M. Sadegh Movahed et. al., arXiv:physics/0608056

$h(2)$ and Hurst exponent in DFAl for fBm

$$
\begin{aligned}
&\left\langle\left[F^{2}(s, \nu)\right]\right\rangle=\left\langle\frac{1}{s} \sum_{i=1}^{s}(Y(i)-a-b i)^{2}\right\rangle \\
& \simeq\left\langle\frac{1}{s} \sum_{i=1}^{s} Y(i)=Y(i)-Y(i-1)\right. \\
&-2\left\langle\frac{a}{s} \sum_{i=1}^{s} y(i)\right\rangle-2\left\langle\frac{b}{s} \sum_{i=1}^{s} i Y(i)\right\rangle+s\langle a b\rangle, \\
& u(i)=x(i)-x(i-1), \\
&=\left\langle\frac{1}{s} \sum_{i=1}^{s} Y(i)^{2}\right\rangle-\frac{s^{2}}{s^{2}}\left\langle b^{2}\right\rangle \\
&\left.-\frac{12}{s^{4}}\left\langle\left[\sum_{i=1}^{s} Y(i)\right]^{2}\right\rangle\right\rangle \\
&= \frac{A}{s}-\frac{4}{s^{2}} B-\frac{12}{s^{4}} D+\frac{12}{s^{3}} C \\
&\langle x(i) x(j)\rangle=\frac{\sigma^{2}}{2}\left[i^{2 H}+j^{2 H}-|i-j|^{2 H}\right], \\
&\langle Y(i) Y(j)\rangle=\frac{12}{s^{3}}\left\langle\sum_{i=1}^{s} i Y(i) \sum_{i=1}^{s} Y(i)\right\rangle \\
&(H+1)^{2}(i j)^{H+1},
\end{aligned}
$$

For fBm series

$$
\begin{aligned}
& \left\langle\left[F^{2}(s, \nu)\right]\right\rangle_{\nu}=\mathcal{C}_{H} s^{2(H+1)}, \\
& \mathcal{C}_{H}=\frac{\sigma^{2}}{(2 H+3)(H+1)^{2}}-\frac{4 \sigma^{2}}{[(H+1)(H+2)]^{2}} \\
& \quad \quad-\frac{12 \sigma^{2}}{[(H+1)(H+3)]^{2}}+\frac{12 \sigma^{2}}{(H+1)^{2}(H+2)(H+3)} .
\end{aligned}
$$

For fGn series

$$
\begin{aligned}
&\left\langle\left[F^{2}(s ; v)\right]\right\rangle_{v}=\mathcal{C}_{\mathcal{H}}(s)^{2 H} \\
& \mathcal{C}_{\mathcal{H}}=\frac{\sigma^{2}}{(2 H+1)}-\frac{4 \sigma^{2}}{2 H+2}+3 \sigma^{2}\left(\frac{2}{H+1}-\frac{1}{2 H+1}\right)-\frac{3 \sigma^{2}}{(H+1)}\left(1-\frac{1}{(H+1)(2 H+1)}\right) \\
& h(q=2)=H \\
& \text { M.Sadegh Movahed et. al., arXiv:physics/0508।49 }
\end{aligned}
$$

For fBm: $\quad h(q=2)>1$

For fGn:

$$
h(q=2)<1
$$

Time series

Scaling exponents

- Multifractal scaling exponent

$$
\tau(q)=q h(q)-1
$$

- Generalized multifractal dimension $D(q)=\frac{\tau(q)}{q-1}$
- Autocorrelation exponent

$$
\left\{\begin{array}{l}
C(s) \sim s^{-\gamma} \\
C(i, j) \sim i^{-\gamma}+j^{-\gamma}-|i-j|^{-\gamma}
\end{array}\right.
$$

- Power spectrum scaling exponent $S(\omega) \sim \omega^{-\beta}$
- Holder exponent

$$
\begin{aligned}
& \alpha=\tau^{\prime}(q) \\
& \alpha=h(q)+q h^{\prime}(q) \\
& f(\alpha)=q[\alpha-h(q)]+1
\end{aligned}
$$

- Singularity spectrum

Correlation and Hurst exponents

$$
\begin{aligned}
& C(s)=\frac{\langle x(i+\tau) x(i)\rangle}{\sigma^{2}} \sim \tau^{-\gamma} \\
& \begin{aligned}
& Y(s)=\sum_{k=1}^{s} x(k)=x(1) \times s^{H} \\
&\left\langle Y(s)^{2}\right\rangle=\sigma^{2} \times s^{2 H} \\
&=\left\langle\left(\sum_{k=1}^{s} x(k)\right)^{2}\right\rangle=\left\langle\sum_{k=1}^{s} x(k)^{2}\right\rangle+\left\langle\sum_{k \neq j}^{s} x(k) x(j)\right\rangle \\
&=i \sigma^{2}+2 \sum_{j=1}^{s-1}(s-j) C(j) \sim s^{2-\gamma}=s^{2 H} \rightarrow \gamma=2-2 H \\
& \text { for } \quad 0.5<H<1
\end{aligned}
\end{aligned}
$$

Generalized fractal dimension based on partition function

$$
\sum_{v=1}^{N_{s}} p(v, s)=1
$$

$$
p^{2}(v, s)=\frac{1}{s} \sum_{i=1}^{s}\left\{Y[(v-1) s+i]-y_{v}(i)\right\}^{2}
$$

$$
Z_{q}(s) \equiv \sum_{v=1}^{N_{s}}|p(v, s)|^{q} \sim s^{\tau(q)}
$$

$$
F_{q}(s)=\left(\frac{1}{N_{s}} \sum_{v=1}^{N_{s}}|p(v, s)|^{q}\right)^{1 / q}
$$

$$
D(q) \equiv \frac{1}{q-1} \lim _{s \rightarrow 0} \frac{\ln Z_{q}(s)}{\ln s}=\frac{\tau(q)}{1-q}
$$

$$
Z_{q}(s)=\sum_{v=1}^{N_{s}}|p(\nu, s)|^{q}=N_{s} F_{q}^{q}(s)
$$

$$
\text { for } q=0 \quad D(0)=D_{f}
$$

$$
\text { for } q=1 \quad D(1) \sim \sum p \ln p
$$

- A criterion for scaling behavior of measure at each subinterval of time series

$$
\begin{aligned}
& p(v, s) \sim s^{\alpha} \quad \text { for } s \rightarrow 0 \\
& P D F \rightarrow \mu(\alpha) \sim l^{\prime}(\alpha) \\
& \alpha=\tau^{\prime}(q) \\
& \alpha=h(q)+q h^{\prime}(q) \\
& f(\alpha)=q[\alpha-h(q)]+1 \\
& \Delta \alpha \equiv \alpha\left(q_{\min }\right)-\alpha\left(q_{\max }\right) \\
& \Delta \alpha \rightarrow 0 \\
& f(\alpha=H)=1
\end{aligned}
$$

A Holder exponent represents monofractal process while the existence of spectrum for Holder exponent demonstrates multifractality nature of time series

- Integration of series should be finite
- Derivative can be defined for series
- Series should be periodic

In many cases, in discrete measurements, above conditions are not satisfied

Power spectrum

- Fourier or legender transformation of correlation function

$$
\begin{aligned}
C_{x}(i, j) & =\langle x(i) x(j)\rangle \\
& =C_{x}(|i-j|)=C_{x}(\tau)=\langle x(i+\tau) x(i)\rangle \\
S_{x}(v) & =\frac{1}{2 T} \int_{-T}^{T} C_{x}(\tau) e^{i \omega \tau} d \tau
\end{aligned}
$$

$$
\begin{aligned}
\sigma^{2}= & C_{x}(0)=\int_{-T}^{T} S_{x}(\omega) d \omega \\
C_{x}(\tau) & =C_{x}(-\tau) \\
S_{x}(\omega) & =A(\omega)+i B(\omega) \\
B(\omega) & =\frac{1}{2 T} \int_{-T}^{T} C_{x}(\tau) \sin (\omega \tau) d \tau=0 \\
S_{x}(\omega) & =\left.X(\omega)\right|^{2} \\
S_{x}(\omega) & =\frac{1}{2 T} \int_{-T}^{T} C_{x}(\tau) e^{i \omega \tau} d \tau=\frac{1}{2 T} \int_{-T}^{T}\langle x(t) \cdot x(t+\tau)\rangle e^{i \omega \tau} d \tau \\
& =\frac{1}{2 T} \int_{-T}^{T} \frac{1}{T} \int_{-T}^{T} x(t) \cdot x(t+\tau) d t e^{i \omega \tau} d \tau \\
& =\frac{1}{2 T^{2}} \int_{-T}^{T} \int_{-T}^{T}\left(\int X\left(\omega^{\prime}\right) e^{-i \omega^{\prime} t} d \omega^{\prime}\right)\left(\int X\left(\omega^{\prime \prime \prime}\right) e^{i \omega^{\prime \prime}(t+\tau)} d \omega^{\prime \prime}\right) d t e^{i \omega \tau} d \tau \\
& =\frac{1}{2 T^{2}}(2 \pi)^{2} \delta\left(\omega-\omega^{\prime \prime}\right) \delta\left(\omega^{\prime}+\omega\right) X(\omega) X^{*}(\omega)
\end{aligned}
$$

Power spectrum exponent $S(v) \sim v^{-\beta}$
$S(v) \sim v^{-\beta} \sim v^{-1+\gamma}$
$\gamma=2-2 H$
$\beta=2 H-1 \quad$ For fG n
$\beta=2 H+1 \quad$ For fBm

Extended self-similarity and Hurst exponent

$\left.S_{q}(\tau) \equiv\langle | X(\dot{\boldsymbol{l}}+\tau)-\left.\mathcal{X}(\dot{\boldsymbol{l}})\right|^{q}\right) \sim \tau^{\xi_{q}}$
$S_{q}(\tau) \sim S_{s}(\tau)^{\xi_{q}}$
$\xi_{q}=q H-q(q-1) b$
$\zeta_{q}=\frac{1}{3}$ For Gaussian data

S. Kimiagar, M. Sadegh Movahed et. al., arXiv:07I 0.5270

$D($ fractal - dimention $)$	$H_{f B m}$	$H_{f G n}$	β	$h(q=\mathbf{r})$	
-	$r-H_{f B m}$	-	$\frac{\Delta-\beta}{r}$	$r-h(q=r)$	D
$r-D$	-	-	$\frac{\beta-1}{r}$	$h(q=\mathbf{r})-1$	$H_{f B m}$
-	-	-	$\frac{\beta+1}{r}$	$h(q=\mathbf{r})$	$H_{f G n}$
$\Delta-r D$	$r H_{f B m}+1$	$r H_{f G n}-1$	-	$r h(q=\mathbf{r})-1$	β
$r-D$	$H_{f B m}+1$	$H_{f G n}$	$\frac{\beta+1}{r}$	-	$h(q=\mathbf{r})$

q	$\tau(q)$	$\alpha=-\frac{d \tau(q)}{d q}$	$f=q \alpha+\tau(q)$
$q \rightarrow-\infty$	$-q \alpha_{\max }$	$\alpha_{\max }=-\ln \mu_{-} / \ln \delta$	0
$q=0$	D	α_{0}	D
$q=1$	0	$\alpha_{1}=-S(\delta) / \ln \delta$	α_{1}
$q \rightarrow+\infty$	$-q \alpha_{\min }$	$\alpha_{\min }=-\ln \mu_{+} / \ln \delta$	0

Fractals: Jens Feder I988

Multifractality

A: $h(q)$ depends on " q "
B: There is a spectrum for holder exponent C : There are various slopes for $T(q)$ in different scales

1) Multifractality due to a fatness of PDF
2) Multifractality due to different correlations in small and large scales

$$
\begin{gathered}
F_{q}(s) / F_{q}^{\mathrm{shuf}}(s) \sim s^{h(q)-h_{\mathrm{shuf}}(q)}=s^{h_{\mathrm{cor}}(q)} \\
F_{q}(s) / F_{q}^{\mathrm{sur}}(s) \sim s^{h(q)-h_{\mathrm{sur}}(q)}=s^{h_{\mathrm{PDF}}(q)} \\
h_{\mathrm{cor}}(q)=0 \quad \text { For Fatness } \\
h_{\mathrm{PDF}}(q)=0 \quad \text { For correlation }
\end{gathered}
$$

What are shuf" and "sur"?
Actually there are the abbreviation of Shuffled and Surrogate data set

Surrogate method

(i) Computing the discrete Fourier transform (DFT) coefficients of the series

$$
\begin{equation*}
\mathcal{F}^{2}\{x(t)\} \equiv|X(\nu)|^{2}=|X(k)|^{2}=\left|\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x\left(t_{n}\right) \mathrm{e}^{\mathrm{i} 2 \pi n k / N}\right|^{2} \tag{9}
\end{equation*}
$$

where $\nu=k / N \Delta t$ and Δt is the step of digitization in the experimental setup.
(ii) Multiplying the DFT coefficients of the series by a set of pseudo-independent, uniformly distributed $\phi(\nu)$ quantities in the range $[0,2 \pi)$:

$$
\begin{equation*}
\tilde{X}(\nu)=X(\nu) \mathrm{e}^{\mathrm{i} \phi(\nu)} \tag{10}
\end{equation*}
$$

(iii) The surrogate data set is given by the inverse DFT as

$$
\begin{equation*}
\mathcal{F}^{-1}\{\tilde{X}(\nu)\} \equiv \tilde{x}\left(t_{n}\right)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1}\left|X_{k}\right| \mathrm{e}^{\mathrm{i} \phi(k)} \mathrm{e}^{-\mathrm{i} 2 \pi n k / N} \tag{11}
\end{equation*}
$$

S. Kimiagar, M. Sadegh Movahed et. al., JSTAT P03020 (2009)

MF-DFA in higher dimension

In many cases, one encounters with self-similar of self-affine surface which is denoted by a two dimensional array $\mathrm{X}(\mathrm{i}, \mathrm{j})$. For this case the MF-DFA has the following steps:
Step I: Suppose

$$
\begin{aligned}
& x(i, j), \quad\left\{\begin{array}{l}
i=1, \ldots, M \\
j=1, \ldots, N
\end{array}\right. \\
& M_{s}=\operatorname{int}\left(\frac{N}{s}\right) \\
& N_{s}=\operatorname{int}\left(\frac{M}{s}\right) \\
& x_{v, w}(i, j)=x\left(l_{1}+i, l_{2}+j\right) \quad 1 \leq i, j \leq s \quad\left\{\begin{array}{l}
l_{1}=(v-1) s \\
l_{2}=(w-1) s
\end{array}\right.
\end{aligned}
$$

Step II: For each non-overlapping segment, the cumulative sum is calculated by:

$$
Y_{v, w}(i, j)=\sum_{k=1}^{i} \sum_{l=1}^{j} x_{v, w}(k, l) \quad 1 \leq i, j \leq s
$$

Step III: The trend of constructed cumulative arrays such as:

$$
\begin{aligned}
& u_{v, w}(i, j)=a_{v, w} i+b_{v, w} j+c_{v, w} \\
& u_{v, w}(i, j)=a_{v, w} i^{2}+b_{v, w} j^{2}+c_{v, w} \\
& u_{v, w}(i, j)=a_{v, w} i j+b_{v, w} i+c_{v, w} j+d_{v, w} \\
& u_{v, w}(i, j)=a_{v, w} i^{2}+b_{v, w} j^{2}+c_{v, w} i+d_{v, w} j+e \\
& u_{v, w}(i, j)=a_{v, w} i^{2}+b_{v, w} j^{2}+c_{v, w} i j+d_{v, w} i+e_{v, w} j+f_{v, w}
\end{aligned}
$$

Step IV: For each non-overlapping segment, the cumulative sum is calculated by:

$$
\begin{aligned}
& \varepsilon_{v, w}(i, j)=Y_{v, w}(i, j)-u_{v, w}(i, j) \\
& F_{v, w}^{2}(s)=\frac{1}{s^{2}} \sum_{i=1}^{s} \sum_{j}^{s} \varepsilon_{v, w}(i, j)^{2}
\end{aligned}
$$

Step V: By averaging over all segments as:

$$
\begin{aligned}
& F_{q}(s)=\left[\frac{1}{N_{s} M_{s}} \sum_{v=1}^{N_{s}} \sum_{w=1}^{M_{s}}\left\{F_{v, w}^{2}(s)\right\}^{q / 2}\right]^{1 / q} \\
& F_{q}(s)=\mathrm{A} \times s^{h(q)} \quad\left\{\begin{array}{l}
s_{\min } \approx 6 \\
s_{\max } \approx \min (M, N) / 4
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
Y(i)=\sum_{k=1}^{i} \sum_{l=1}^{j}[x(k, l)-\langle x\rangle]^{r} \\
y_{\nu}(i, j)=a_{\nu}+b_{\nu} i+c_{\nu} j \\
b_{\nu}=\frac{\sum_{i, j=1}^{s, m} Y(i, j) i-\frac{1}{s \times m} \sum_{i, j=1}^{s, m} Y(i, j) \sum_{i, j=1}^{s m} i}{\sum_{i, j=1}^{s, m} i^{r}-\frac{1}{s \times m}\left[\sum_{i, j=1}^{s, m} i\right]^{r}}, \\
\simeq \frac{\sum_{i, j=1}^{s, m} Y(i, j) i-\frac{s}{Y} \sum_{i, j=1}^{s, m} Y(i, j)}{m \times s^{r} / \backslash ケ} \\
c_{\nu}=\frac{\sum_{i, j=1}^{s, m} Y(i, j) j-\frac{1}{s \times m} \sum_{i, j=1}^{s, m} Y(i, j) \sum_{i, j=1}^{s m} j}{\sum_{i, j=1}^{s, m} j^{r}-\frac{1}{s \times m}\left[\sum_{i, j=1}^{s, m} j\right]^{r}}, \\
\simeq \frac{\sum_{i, j=1}^{s, m} Y(i, j) j-\frac{m}{r} \sum_{i, j=1}^{s, m} Y(i, j)}{s \times m^{r} / \backslash Y}
\end{gathered}
$$

$$
\begin{aligned}
& a_{\nu}=\frac{1}{s \times m} \sum_{i=1}^{s} \sum_{j=1}^{m} Y(i, j)-\frac{b_{\nu}}{s \times m} \sum_{i=1}^{s} \sum_{j=1}^{m} i-\frac{c_{\nu}}{s \times m} \sum_{i=1}^{s} \sum_{j=1}^{m} j \\
& \quad \simeq \frac{1}{s \times m} \sum_{i, j=1}^{s, m} Y(i, j)-\frac{b_{\nu} s}{r}-\frac{c_{c} m}{r}, \\
& F^{r}(s ; \nu)=\frac{1}{s m} \sum_{i=1}^{s} \sum_{j=1}^{m}\left[Y_{\nu}(i, j)-y_{\nu}(i, j)\right]^{r}
\end{aligned}
$$

$$
\begin{aligned}
&\left\langle\left[F^{r}(s, m ; \nu)\right]\right\rangle=\left\langle\frac{1}{s \times m} \sum_{i, j=1}^{s, m}[Y(i, j)-a-b i-c j]^{r}\right\rangle \\
& \simeq\left\langle\frac{1}{s \times m} \sum_{i, j=1}^{s, m} Y(i, j)^{r}\right\rangle+\left\langle a^{r}\right\rangle+\frac{r^{r}}{r}\left\langle b^{r}\right\rangle+\frac{m^{r}}{r}\left\langle c^{r}\right\rangle \\
&-r\left\langle\frac{a}{s \times m} \sum_{i, j=1}^{s, m} Y(i, j)\right\rangle-r\left\langle\frac{b}{s \times m} \sum_{i, j=1}^{s m} i Y(i, j)\right\rangle \\
&-\zeta\left\langle\frac{c}{s \times m} \sum_{i, j=1}^{s m} j Y(i, j)\right\rangle+s\langle a b\rangle+m\langle a c\rangle+\frac{s \times m}{r}\langle b c\rangle \\
& Y(i, j)=(i j)^{H} x \\
& Y(i, j)-Y(k, l)= Y(i, l)+Y(k, j)+|i-k|^{H}|j-l|^{H} x \\
&= {\left[(i l)^{H}+(k j)^{H}+|i-k|^{H}|j-l|^{H}\right] x, }
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle[Y(i, j)-Y(k, l)]^{r}\right\rangle=\sigma^{r}\left[(i l)^{H}+(k j)^{H}+|i-k|^{H}|j-l|^{H}\right]^{r} \\
& \sigma^{r}=\left\langle x(i, j)^{r}\right\rangle \\
& \left\langle Y(i, j)^{r}\right\rangle=\sigma^{r}(i j)^{r H} \\
& \langle Y(i, j) Y(k, l)\rangle=\frac{\sigma^{\curlyvee}}{r^{r}}\left[(i j)^{\Upsilon_{H}}+(k l)^{\Upsilon_{H}}-(i k)^{\Upsilon_{H}}-(j l)^{\Upsilon_{H}}\right. \\
& -\boldsymbol{r}|i-k|^{H}|j-l|^{H}\left[(i l)^{H}+(k j)^{H}\right] \\
& \left.-|i-k|^{\Gamma_{H}}|j-l|^{\Gamma_{H}}-\boldsymbol{\Gamma}(i j k l)^{H}\right],
\end{aligned}
$$

$$
\left\langle\left[F^{\zeta}(s, m ; \nu)\right]\right\rangle_{\nu}=C_{H}(s \times m)^{r H}
$$

$$
\times\left\{\boldsymbol{r} \Gamma[\boldsymbol{r}+\boldsymbol{r} H]\left(\Gamma[\boldsymbol{r}+H]\left\{\boldsymbol{r} H^{\boldsymbol{r}} \Gamma[H]+(\boldsymbol{r}+\Delta H) \Gamma[\mathbf{\jmath}+H]+\Gamma[\boldsymbol{r}+H]\right\}+(\boldsymbol{r}+H) \Gamma[\boldsymbol{r}+\boldsymbol{r} H]\right)\right.
$$

$$
\left.+\Gamma[\boldsymbol{r}+H]^{r} \Gamma[\boldsymbol{\Delta}+\boldsymbol{r} H]\right\}+\left(\frac{1}{(1+H)^{r}}+\frac{\Gamma \Gamma[\mathbf{\jmath}+H]^{r}}{\Gamma[r+r H]}\right)
$$

$$
\times\left(\mathbf{\vee}\left[\frac{1}{(1+H)^{r}}+\frac{r \Gamma[\backslash+H]^{r}}{\Gamma[\boldsymbol{r}+r H]}\right]+\frac{\uparrow \wedge}{(1+H)(r+H) \Gamma[\boldsymbol{\jmath}+\boldsymbol{r} H]^{r}}\right.
$$

$$
\left.\left.\left.\times\left(\boldsymbol{r} \Gamma[\boldsymbol{r}+H]^{\boldsymbol{r}} \Gamma[\boldsymbol{\tau}+\boldsymbol{r} H]+\left(\boldsymbol{r}(\mathbf{1}+H)(\boldsymbol{r}+H) \Gamma[\boldsymbol{r}+H]^{\boldsymbol{r}}+\Gamma[\boldsymbol{\Upsilon}+\boldsymbol{r} H]\right) \Gamma[\boldsymbol{\Delta}+\boldsymbol{r} H]\right)\right)\right\}\right]
$$

$$
\Gamma(x) \equiv(x-1)!=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

$$
\begin{aligned}
& +\left\{-\frac{\mathbf{Y}\left(\boldsymbol{Y} \Gamma[\boldsymbol{r}+H]^{\boldsymbol{r}}+\Gamma[\boldsymbol{r}+\boldsymbol{r} H]\right)}{(\mathbf{1}+H)^{r}(\boldsymbol{r}+H) \Gamma[\boldsymbol{r}+\boldsymbol{r} H] \Gamma[\boldsymbol{\zeta}+\boldsymbol{Y} H]^{\boldsymbol{r}}}\right.
\end{aligned}
$$

Some important exponents

$$
\begin{aligned}
& \tau(q)=q h(q)-d_{f} \\
& D_{f}=3-H
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\mu(x) \otimes|x|^{-(1-H)} \quad H \in(0,1) \\
& \tau(q)=q(1+H)-1-\log _{2}\left[p^{q}+(1-p)^{q}\right]
\end{aligned}
$$

Gao-Feng Gu and Wei-Xing Zhou, PHYSICAL REVIEW E 74, 061104 (2006)

More about cumulative sum $X(i, j)=$

$$
+\sum_{k=1}^{i-1} x(k, j)+\sum_{l=1}^{j-1} x(i, l)+x(i, j)
$$

More about cumulative sum

$$
X\left(l_{v}+i, l_{w}+j\right)=
$$

$$
\begin{aligned}
& s=4 \\
& i=j=2 \\
& v=2 \\
& w=2 \\
& l_{2}=4 \\
& l_{2}=4
\end{aligned}
$$

- Step I: Consider two time series as:
$\{x(i)\}\{y(i)\} \quad i=1,2, \ldots, N$
$M_{s}=\operatorname{int}\left(\frac{N}{s}\right)$
- Step II: Construct profile and trend functions. Polynomials or based on empirical mode decomposition (EMD, non-parametric)
$X_{v}(k)=\sum_{i=1}^{n} x\left(l_{i}+i\right) \quad l=(v-1) s$
$Y_{v}(k)=\sum_{i=1}^{k} y\left(l_{v}+i\right)$
$F(s, v)=\frac{1}{s} \sum_{i}^{s}\left\{Y\left[(v-1) s+i-y_{v}(i)\right\} \times\left\{X\left[(v-1) s+i-x_{v}(i)\right\} \quad v=1, \ldots, M\right.\right.$
$F(s, v)=\frac{1}{s} \sum_{i}^{s}\left\{Y\left[N-(v-1) s+i-y_{v}(i)\right\} \times\left\{X\left[N-(v-1) s+i-x_{v}(i)\right\} \quad v=M_{s}+1, \ldots, 2 M\right.\right.$
B. Podobnik and H. Eugene Stanley, PRL 100, 084102 (2008) Wei-Xing Zhou, PRE 77, 066211 (2008)
- Step IV: Averaging over all segments as:

- Step V: Demanding a scaling relation according to:

$F_{q}(s) \sim s^{\lambda(q)}$

- If two underlying series to be equal so one finds nothing except the Hurst exponent:

$$
F_{q}(s) \sim s^{h(q)}
$$

2D version of MF-DCCA

$$
\begin{aligned}
& x(i, j) \quad \begin{array}{l}
y(i, j) \quad i=1, \ldots, M \\
M_{s}=\operatorname{int}\left(\frac{M}{s}\right) \quad N_{s}=\operatorname{int}\left(\frac{N}{s}\right) \\
X_{v, w}(i, j)=\sum_{k=1}^{i} \sum_{l=1}^{j} x_{v, w}(k, l) \\
Y_{v, w}(i, j)=\sum_{k=1}^{j} \sum_{l=1}^{j} y_{v, w}(k, l) \\
F_{v, w}(s)=\frac{1}{s^{2}} \sum_{i=1}^{s} \sum_{j=1}^{s}\left[X_{v, w}(i, j)-\tilde{X}_{v, w}(i, j)\right]\left[Y_{v, w}(i, j)-\tilde{Y}_{v w}(i, j)\right] \\
F_{q}(s)=\left(\frac{1}{M_{s} N_{s}} \sum_{v=1}^{M} \sum_{w=1}^{N}\left[F_{v, w}(s)\right]^{q / 2}\right)^{1 / q} \\
F_{0}(s)=\exp \left(\frac{1}{2 M_{s} N_{s}} \sum_{v=1}^{M_{s}} \sum_{w=1}^{N_{s}} \ln \left[F_{v, w}(s)\right]\right) \\
F_{q}(s) \sim s^{-\lambda(q)}
\end{array} .
\end{aligned}
$$

FIG. 2. (Color online) Multifractal nature of the power-law cross correlations of two MRWs. (a) Power-law scaling in $F_{x y}, F_{x x}$, and $F_{y y}$ with respect to s for $q=2$ and 5 ; (b) power-law exponents $h_{x y}, h_{x x}$, and $h_{y y}$.

FIG. 3. (Color online) Multifractal nature of the power-law cross correlations of the absolute values of daily price changes for DJIA and NASDAQ indices in the period from July 1993 to November 2003. (a) Power-law scaling in $F_{x y}, F_{x x}$, and $F_{y y}$ with respect to s for $q=2$ and 5 . The scaling range is the same as in Ref. [15]. (b) Dependence of the power-law exponents $h_{x y}, h_{x x}$, and $h_{y y}$ as nonlinear functions of q, indicating the presence of multifractality. There is no clear relation between these exponents.

FIG. 3. One-dimensional version of a cascade model of eddies, each breaking down into two new ones. The flux of kinetic energy to smaller scales is divided into nonequal fractions p_{1} and p_{2}. This cascade terminates when the eddies are of the size of the Kolmogorov scale, η.

1) B. B. Mandelbrot, J. Fluid Mech. 62, 3311974.
2) C. Meneveau and K. R. Sreenivasan, Phys. Rev. Lett. 59, 14241987.
3)E. A. Novikov, Phys. Fluids A 2, 814 1990
3) C. Meneveau and K. R. Sreenivasan, J. Fluid Mech. 224, 4291991.

FIG. 4. Multifractal detrended cross-correlation analysis of two cross-correlated synthetic binomial measures from the p model. The size of each multifractal is 4096×4096 and the cross-correlation coefficient is 0.48 . The numerical exponents $h_{x x}(q)$ and $h_{y y}(q)$ obtained from the multifractal detrended fluctuation analysis of X and Y are located approximately on the analytical curves $H_{x x}(q)$ and $H_{y y}(q)$. This example illustrates the relation $h_{x y}(q)$ $=\left[h_{x x}(q)+h_{y y}(q)\right] / 2$.

$$
H_{z z}(q)=\left[2-\log _{2}\left(p_{11}^{q}+p_{12}^{q}+p_{21}^{q}+p_{22}^{q}\right)\right] / q,
$$

Cross-correlation exponent for stationary series

$$
\begin{aligned}
& x(i, j) \quad y(i, j) \quad i=1, \ldots, M \quad j=1, \ldots, N \\
& \mu_{x}=\frac{1}{N} \sum_{i=1}^{N} x(i) \quad \sigma_{x}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left[x(i)-\mu_{i}\right]^{2} \\
& \mu_{y}=\frac{1}{N} \sum_{i=1}^{N} y(i) \quad \sigma_{y}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left[y(i)-\mu_{y}\right]^{2} \\
& C_{x}(\tau)=\frac{\left\langle\left(x(i+\tau)-\mu_{x}\right)\left(x(i)-\mu_{x}\right)\right\rangle}{\sigma_{x}^{2}} \sim \tau^{-\gamma} \\
& C_{x j}(\tau)=\frac{\left\langle\left(x(i+\tau)-\mu_{i}\right)(y(i)-\mu)\right\rangle}{\sigma_{i} \sigma_{x}} \sim_{\tau} \\
& F_{\nu}(s)=\frac{1}{s} \sum_{i=1}^{s}\left[Y_{v}(i)-\bar{Y}\right]\left[X_{v}(i)-\bar{X}\right] \\
& F_{2}^{2}(s)=\frac{1}{M_{s}} \sum_{v=1}^{M}\left[F_{v}(s)\right]=\left\langle\left[Y_{v}(s)-\bar{Y}\right]\left[X_{v}(s)-\bar{X}\right]\right\rangle \\
& =s C_{x y}(0)+\sum_{i=1}^{s-1}[s-i]\left[C_{x y}(i)+C_{x y}(-i)\right] \simeq s^{1-\gamma_{N y}}+s^{2-\gamma_{x y}} \\
& F_{2}^{2}(s) \sim s^{2 \lambda} \sim s^{2-\gamma_{s w}} \rightarrow 2-\gamma_{w}=2 \lambda \rightarrow \gamma_{w s}=2-2 \lambda
\end{aligned}
$$

Cross-Correlation in the presence of trends

$$
\begin{aligned}
& x(i, j) \quad y(i, j) \quad i=1, \ldots, M \quad j=1, \ldots, N \\
& F(s, v)=\frac{1}{s} \sum_{i}^{s}\left\{Y[(v-1) s+i]-y_{v}(i)\right\} \times\left\{X[(v-1) s+i]-x_{v}(i)\right\} \\
& F_{2}^{2}(s)=\left\{\frac{1}{M_{s}} \sum_{v=1}^{M}[F(s, v)]\right\} \sim s^{2 \lambda} \\
& F_{2}^{2}(s) \sim s^{2 \lambda} \sim s^{2-\gamma_{x v}} \rightarrow 2-\gamma_{x y}=2 \lambda \rightarrow \gamma_{x y}=2-2 \lambda \\
& \text { if } \quad x \equiv y \rightarrow \gamma_{x x}=2-2 H
\end{aligned}
$$

- For stationary anti-correlated signal i.e. $H<0.5$, SWV
- For stationary correlated signal, $H>0.5$, R/S
- For signal with superimposed trends, WTMM, MF-DFA, MF-TWDFA, DMA

More about DFA

1) The longer the time series, the better the agreement with the theory in all methods but DFA behaves more reliable than others
2) DFA cannot give correct results when $h(q=2) \sim 0$, In this case it is recommended to construct double profile and use DFA method

DMA (BDMA \& CDMA) and MF-TWDFA

Refer to :
I) arXiv:cond-mat/0507395
2) PRE 7I, 05 II IOI (2005)
3) PRE 73, 016117 (2006)
4) JSTAT P0602I (2010)

$$
\text { Limei Xu et. al., PRE 71, } 051101 \text { (2005) }
$$

Crossover and effect of trends

- Polynomial trends: MF-DFAm
- Sinusoidal trends: F-DFA, SVD, chaotic SVD and Empirical mode decomposition(EMD)
Z. Wu et al., PNAS, 104, 38 (2007)

Polynomial Trends

It has been demonstrated that by MF-DFAm, polynomial of order m-1 to be diminished

K. Hu et. al., PRE 64, 0 IIII4 (200I)

Sinusoidal Trends

Anticorrelated noise + sin. trend

K. Hu et. al., PRE 64, ${ }^{\mathrm{n}} \mathrm{I}$ I I I 4 (200I)

Competition between noise and sinusoidal trends

Competition between noise and sinusoidal trends

S. Kimiagar, M. Sadegh Movahed et. al., JSTAT PO3020 (2009)

Fourier-Detrended

- Indeed, this method bases on High-pass filter

We transform the data set to the Fourier space and then truncate the first few coefficients of the Fourier expansion, finally by inverse transformation, the clean data will be retrieved

Physica A 357, 447-454 (2005); Physica A 354, 182-198 (2005); Chaos, Solitons and fractals 26, 777-784 (2005), Jstat P03020 (2009)

Singular Value Decomposition (SVD)

$$
\begin{aligned}
& \left\{x_{i}\right\} ; i=1, \ldots, N \quad d \leq N-(d-1) \tau+1 \\
& \boldsymbol{\Gamma} \equiv\left(\begin{array}{cccc}
x_{1} & x_{1+\tau} & \ldots & x_{1+N-(d-1) \tau-1} \\
\vdots & \vdots & \vdots & \vdots \\
x_{i} & x_{i+\tau} & \ldots & x_{i+N-(d-1) \tau-1} \\
\vdots & \vdots & \vdots & \vdots \\
x_{d} & x_{d+\tau} & \ldots & x_{d+N-(d-1) \tau-1}
\end{array}\right)
\end{aligned}
$$

$\Gamma=\mathbf{U S V}^{\dagger}$
$\Gamma^{\dagger} \boldsymbol{\Gamma} \mathbf{v}_{\mathbf{i}}=\lambda_{i}^{2} \mathbf{v}_{\mathbf{i}}$
$\boldsymbol{\Gamma} \Gamma^{\dagger} \mathbf{u}_{\mathbf{i}}=\lambda_{i}^{2} \mathbf{u}_{\mathbf{i}}$
$x_{i+j-1}^{*}=\Gamma_{i j}^{*}$

The p dominant eigenvalue and associating eigendecomposed vector represent the superimposed trend and the remaining ($\mathrm{d}-\mathrm{p}$) demonstrates intrinsic fluctuations
S. hajian and M. Sadegh Movahed, arXiv:0908.0I32

S. hajian and M. Sadegh Movahed, arXiv:0908.0I 32

Empirical Mode decomposition (EMD)

- This method is known as non-parametric method
- There is a good review by Norden E. Huang Proceedings: Mathematical, Physical and Engineering Sciences, Vol. 454, No. 1971 (Mar. 8, 1998)
- In this case, the intrinsic mode functions (IMFs) satisfy two conditions:

1) The number of extrema and zero-crossing differs only by one
2) The local average is zero
3) Identify the local extrema and find their average (Generating upper envelop and lower envelope)
4) Subtracting the envelop mean from signal
5) Check the IMF conditions

(c)

D. Kim et. all.,R
Journal,
Vol.1, 1
may 2009
 1-st imt

AAAAAAAAAAAAAAAAAAAAAAAA

1-nt residue

wwwn

2-nd residue

1-st IMF

residue

D. Kim et.
all.,R
Journal,
Vol.1, 1
may 2009

Advantages and disadvantages

- The size of underlying data won't be invariant by using F-DFA, while the size will be preserved in SVD and EMD

As an example: Application of DCCA Sunspot and River flow

solar irradiance to be
increases when sun
activity increases and
the cloud cover to be
increase resulting
stream flow increase

River	Discharge $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Series length	Drainage area $\left(\mathrm{km}^{2}\right)$	Location
French broad	2093	$1896.1-2005.12$	2448	$35^{\circ} 36^{\prime} \mathrm{N}$
			$82^{\circ} 34^{\prime} \mathrm{W}$	
Daugava	601	$1953.1-2002.12$	$56^{\circ} 57^{\prime} \mathrm{N}$	
			$24^{\circ} 6^{\prime} \mathrm{E}$	
Holston	479	$1931.1-2005.12$	300	$36^{\circ} 39^{\prime} \mathrm{N}$
			$81^{\circ} 50^{\prime} \mathrm{W}$	
Nolichucky	1379	$1921.1-2005.12$	$36^{\circ} 10^{\prime} \mathrm{N}$	
			$82^{\circ} 27^{\prime} \mathrm{W}$	

El Nino index3 (ENSO) and sun activity

El nino warming the surface La nino cooling the surface

River	$\lambda_{\text {ENSO }}$	$\gamma_{\times}^{\text {ENSO }}$	$\lambda_{\text {sunspot }}$	$\gamma_{\times}^{\text {sunspot }}$
Nolichucky	0.89 ± 0.03	0.22 ± 0.06	0.94 ± 0.01	0.12 ± 0.02
French Broad	0.89 ± 0.03	0.22 ± 0.06	0.98 ± 0.02	0.04 ± 0.02
Holston	0.85 ± 0.03	0.30 ± 0.06	0.90 ± 0.01	0.20 ± 0.02
Daugava	0.74 ± 0.03	0.52 ± 0.06	0.77 ± 0.01	0.46 ± 0.02

Main results

- There is a universal behavior for river flow fluctuation during "12-24 < s < 130 " months. $\lambda=1.17 \pm 0.04$
- There is a crossover at $s x \sim 130$ months for all mentioned rivers.
- The contribution of sun activity represented by sunspot is larger than ENSO effect at least since 1950.
- Due to various values of λ 's for different rivers, we conclude that beside sun activity, the geographical position, human activity, drainage network have also reasonable impact on the runoff water fluctuations

User manual for MF-DFA code written by Sadegh Movahed

8: In some case, we have to use double profile for data. It is done by the proper option in my program.
The name of output files are as follows:

1) hurst.txt gives generalized Hurst exponent versus q
2) $\log _{-} f$ _s.txt gives the $\ln (F(s))$ versus $\ln (s)$
3) f_s.txt gives the fluctuation function versus " s "
4) tau.txt gives classical multifractal scaling exponent
5) D.txt gives generalized multifractal dimension
6) singularity.txt gives singularity spectrum
7) PDF.txt gives probability density function

- I demonstrated the general view about fractal and multifractal time series.
- Some novel and robust methods in data analysis, in various dimensions were explored
- The relation of derived exponents and more relevant ones from complex systems point of view were developed
- I investigated the effect of various trends in methods
- An application in climate and hydrology was considered

Future perspective

- Method construction (More robust and reliable), effect of trends and detrending procedures
- Applications: Due to robustness technologies for recoding various type of data set, ranging form nano-scales to MPc scales, we expect that there are many fantastic opportunities, especially in multidisciplinary sciences to get deep insight and new interpretations regarding to phenomena.

G
$\Theta=2.5^{\circ} \quad R=1^{\prime}$
S
GS

Thank you

