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Glossary
Complex system: A system consisting of many 
non-linear components.

Time se r ie s: One d imens io nal ar ray 
representing value of an observable based on 
dynamical variable so-called time.

Scaling law: A power law function describing  
the behavior of a typical physical quantity.

Fractal and multifractal systems: A typical 
system which characterized by a scaling law 
with non-integer exponent in all scaling 
ranges. On the other hand, multifractal has 
infinite number of different fractal exponents. 
Each of them are valid in proper scaling range.  
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Self-similar and self-affine: Magnification of 
system’s parts in every directions have same 
scaling exponent for matching to whole of 
system. While self-affinity is a generalization 
for anisotropic scaling behavior.  

Cross-over: Changing in the scaling behavior

Non-stationary: The weak definition is 
concerned to changing the mean standard 
deviation of time series with time. Strong 
definition of stationarity requires that all 
moments remain constant. Usually external 
affects cause nonstationarity in time series.  

Trend and detrending: It is an intrinsically 
fitted monotonic function or a function in 
which there can be at most one extremum 
within a given data span. Detrending is the 
operation of removing trend
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A brief History on Complex system science
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A brief History on Complex system science

~1700 A.D. Gottfried leibniz

~1872 A.D. Karl Weierstrass

~1904 A.D. Helge von Koch

~1915 A.D. Waclaw Seirpinski

~1951 A.D. H. E. Hurst

~1968 A.D. B. B. Mandelbroat
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Model construction

 To investigate the evolution of phenomena 
in the nature and probably track their 
future situations. 

It should be a simple from mathematical 
point of view.  
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Natural time series
Geophysics time series: temperature, precipitation, 
water runoff, seismic events, climate dynamics and 
so on.

Medical and physiological time series: Heartbeat, 
blood pressure, glucose level, gene expression data 
and so on.

Astrophysical time series: X-ray and cosmic ray, 
sunspot, CMB (actually not time series),....

Social and technical time series: Traffic, internet, 
Finance, language characteristics, chemistry a 
petroleum, .... 

Physics data: surface roughness, spectroscopy, ....  
Thursday, July 15, 2010



Why Fractal and multifractal 
Analysis?

Prediction of the future behavior of the 
systems

Classification of various systems from complex 
systems point of view

Find the universality properties of underlying 
systems  
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Direct computation and determination

Indirect computation and determination

Problems and Discrepancies regarding to 
Observations and Models
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Direct computation and determination

Indirect computation and determination

Trend and unknown noise

Problems and Discrepancies regarding to 
Observations and Models
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Self-affinity in time 
series

• Suppose a time series as:

y : {y(i)} i = 1,...,N

i→ a × i

y(a × i) = a
H
y(i)

y(i) = x(1) + x(2) + x(3) + ...+ x(i) = i
H
x(1)

So-called Hurst exponent
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Classification of time series 
based on Hurst exponent

• Anti-correlated :    H<0.5

• Uncorrelated:        H=0.5

• Correlated:           H>0.5 
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Fractional Gaussian 
Noise
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Fractional Brownian 
Motion 
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S. Kimiagar, M. Sadegh Movahed et. 
al., arXiv:0710.5270
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Novel Fractal Analysis methods
Hurst’ rescaled range ( R/S ) analysis : By Hurst 
(1951) 

Scaled windowed variance analysis ( SWA ) : By  
Mandelbort (1985)

Dispersional analysis ( Disp ) : By Bassingthwaighte 
(1988)

Detrended fluctuation analysis ( DFA ) : By Peng 
(1994)

 Some state-of-the-art algorithm based on previous 
idea such as: MF-DFA, MF-DCCA, MF-TWDFA, DMA 
(BDMA & CDMA), WTMM   
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Detrending methods

 Parametric: Done in DFA

 Non-parametric: Empirical mode 
decomposition (EMD)  

I must point out that now a days there are 
some challenge regarding to Detrending 

methods in multifractal analyses     
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Description and Application of 
mentioned methods

 Part A:  For stationary case without trends

 Part B: For non-stationary case with trends 

Thursday, July 15, 2010



SWV method
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R/S method
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Dispersional method

µ(ν, s) =
1

s

s∑

i=1

Y [(ν − 1)s+ i]

〈µ(s)〉 =
1

Ns

Ns∑

ν=1

µ(ν, s)

M(s) =
1

Ns

Ns∑

ν=1

[µ(ν, s)− 〈µ(s)〉]

M(s) ∼ s2H
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Multi-Fractal Detrended 
Fluctuation in 1D DFAm remove trend of 

order m in profile or trend 
of order m-1 in original 
seris

Stop
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Jan W. Kantelhart, et. al., arXiv:physics/0202070; M. Sadegh Movahed et. al., arXiv:physics/0508149
S. Hajian and M. Sadegh Movahed,  arXiv:0908.0132

{X} : {Fq(s)} {Θ} : {h(q)}

P (h(q)|X) =
L(X |h(q))P (h(q))
∫
L(X |h(q))dh(q)

L(X |h(q)) ∼ exp

(

−χ
2(h(q))

2

)

χ
2(h(q)) =

∫

ds
[Fobs.(s)− FThe.(s;h(q))]

2

σ
2

obs.(s)

68.3% =

∫ +σ
+

−σ
−

L(X |h(q))dh(q)

of scaling

to h+σ
+

−σ
−
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Yu Zhou and Yee Leung, JSTAT P06021 (2010)
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h(2) and Hurst exponent in DFA1 for 
fGn

(1

(2

(3

(4

Thursday, July 15, 2010



Thursday, July 15, 2010



M. S. Taqqu et. al., Fractals, Vol. 3, No. 4 (1995)M. 
Sadegh Movahed et. al., arXiv:physics/0608056
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h(2) and Hurst exponent in DFA1 for 
fBm
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For fGn series

For fBm series

M. Sadegh Movahed et. al., arXiv:physics/0508149
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For fBm:  

For fGn:

h(q = 2) > 1

h(q = 2) < 1
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Scaling exponents

• Multifractal scaling exponent

• Generalized multifractal dimension

• Autocorrelation exponent

• Power spectrum scaling exponent

• Holder exponent

• Singularity spectrum

 

τ (q) = qh(q) −1

D(q) =
τ (q)
q −1

C(s)  s
−γ

C(i, j)  i
−γ

+ j
−γ − i − j

−γ

⎧
⎨
⎪

⎩⎪

S(ω ) ω −β

α = ′τ (q)

α = h(q) + q ′h (q)

f (α ) = q α − h(q)[ ]+1
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Correlation and Hurst exponents

 

C(s) =
x(i + τ )x(i)

σ 2
 τ −γ

Y (s) = x(k)
k=1

s

∑ = x(1) × sH

Y (s)
2

= σ 2 × s2H

= x(k)
k=1

s

∑⎛⎝⎜
⎞
⎠⎟

2

= x(k)
2

k=1

s

∑ + x(k)x( j)
k≠ j

s

∑

= iσ 2
+ 2 (s − j)C( j)

j=1

s−1

∑  s
2−γ

= s
2H → γ = 2 − 2H

for 0.5 < H < 1
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Generalized fractal dimension based on partition function

 

p(ν, s)

p(ν, s)
ν=1

Ns

∑ = 1

Zq (s) ≡ p(ν, s)
q

ν=1

Ns

∑  s
τ (q)

D(q) ≡
1

q −1
lim
s→0

lnZq (s)

ln s
=
τ (q)

1− q

for q = 0 D(0) = D f

for q = 1 D(1)  p ln p∑

 

p
2
(ν, s) =

1

s
Y [(ν −1)s + i]− yν (i){ }

2

i=1

s

∑

Fq (s) =
1

Ns

p(ν, s) q
ν=1

Ns

∑
⎛

⎝⎜
⎞

⎠⎟

1/q

Zq (s) ≡ p(ν, s) q
ν=1

Ns

∑ = NsFq
q
(s)


N

s
s
qh(q)
 s

qh(q)−1
 s

τ (q)

τ (q) = qh(q) −1

Free energy and T-1
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Singularity spectrum
A criterion for scaling behavior of measure 
at each subinterval of time series

 

p(ν, s)  s
αν for s→ 0

PDF→ µ(α )  l− f (α )

α = ′τ (q)

α = h(q) + q ′h (q)

f (α ) = q α − h(q)[ ]+1
Δα ≡ α(q

min
) −α(q

max
)

Δα → 0

f (α = H ) = 1

A Holder exponent represents 
monofractal process while the 
existence of spectrum for 
Holder exponent demonstrates 
multifractality nature of time 
series   
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Necessary condition for 
FT

Integration of series should be finite

Derivative can be defined for series

Series should be periodic

In many cases, in discrete measurements, above 
conditions are not satisfied 
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Power spectrum

 Fourier or legender transformation of 
correlation function

Cx (i, j) = x(i)x( j)

= Cx i − j( ) ≡ Cx (τ ) = x(i + τ )x(i)

Sx (ν) =
1

2T
Cx (τ )e

iωτ
dτ

−T

T

∫
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Power spectrum exponent 
S(ν)∼ν-β

 

S(ν)  ν −β
 ν −1+γ

γ = 2 − 2H

β = 2H −1

β = 2H +1

For fGn

For fBm
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Extended self-similarity and Hurst exponent

 

Sq (τ ) ≡ x(i + τ ) − x(i)
q
 τ

ξq

Sq (τ )  Ss (τ )
ζq

ξq = qH − q(q −1)b

ζq =
1

3
For Gaussian data

S. Kimiagar, M. Sadegh Movahed et. al., arXiv:0710.5270
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Fractals:  Jens Feder 1988
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Multifractality 

A: h(q) depends on “q” 
B: There is a spectrum for holder exponent
C: There are various slopes for τ(q) in 
different scales 
 

 What are the sources? 
1) Multifractality due to a fatness of PDF

2) Multifractality due to different correlations 
    in small and large scales
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For Fatness

For correlation

What are shuf” and “sur”?
Actually there are the abbreviation of 

Shuffled and Surrogate data set
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Surrogate method
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S. Kimiagar, M. Sadegh Movahed et. al., JSTAT P03020 (2009) 
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MF-DFA in higher dimension
In many cases, one encounters with  self-similar of self-affine surface which is denoted by a two 

dimensional array X(i,j). For this case the MF-DFA has the following steps:

Step I: Suppose

Step II: For each non-overlapping segment, the cumulative sum is calculated by: 

  

x(i, j),
i = 1,...,M

j = 1,...,N

⎧
⎨
⎩

M s = int
N

s

⎛
⎝⎜

⎞
⎠⎟

Ns = int
M

s

⎛
⎝⎜

⎞
⎠⎟

xv,w (i, j) = x(l1 + i,l2 + j) 1 ≤ i, j ≤ s
l
1
= (v −1)s

l
2
= (w −1)s

⎧
⎨
⎩

Yv,w (i, j) = xv,w (k,l)
l=1

j

∑
k=1

i

∑ 1 ≤ i, j ≤ s
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Step III: The trend of constructed cumulative arrays such as:

Step IV: For each non-overlapping segment, the cumulative sum is calculated by:

Step V: By averaging over all segments as: 

 

  

uv,w (i, j) = av,wi + bv,w j + cv,w

uv,w (i, j) = av,wi
2
+ bv,w j

2
+ cv,w

uv,w (i, j) = av,wij + bv,wi + cv,w j + dv,w

uv,w (i, j) = av,wi
2
+ bv,w j

2
+ cv,wi + dv,w j + e

uv,w (i, j) = av,wi
2
+ bv,w j

2
+ cv,wij + dv,wi + ev,w j + fv,w

εv,w (i, j) = Yv,w (i, j) − uv,w (i, j)

Fv,w
2
(s) =

1

s
2

εv,w (i, j)
2

j

s

∑
i=1

s

∑

Fq (s) =
1

NsM s

Fv,w
2
(s){ }

w=1

M s

∑
q /2

v=1

Ns

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/q

Fq (s) = Α× sh(q)
s
min

≈ 6

s
max

≈ min(M ,N ) / 4

⎧
⎨
⎩
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Some important exponents

τ (q) = qh(q) − d f

D f = 3− H

f (x) = µ(x)⊗ x
−(1−H )

H ∈(0,1)

τ (q) = q(1+ H ) −1− log2 p
q
+ (1− p)q⎡⎣ ⎤⎦
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Gao-Feng Gu and Wei-Xing Zhou, PHYSICAL REVIEW E 74, 061104 (2006)
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More about cumulative sum

X(i, j) = Xv,w (i −1, j −1) + x(k, j)
k=1

i−1

∑ + x(i,l)
l=1

j−1

∑ + x(i, j)
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More about cumulative sum

X(lv + i,lw + j) = Xv,w (i, j) + x(k,l)
l=1

lw

∑
k=1

lv

∑ + x(k,l)
l= lw +1

lw + j

∑
k=1

lv

∑ + x(k,l)
l=1

lw

∑
k= lv +1

lv + i

∑

s = 4

i = j = 2

v = 2

w = 2

l
2
= 4

l
2
= 4
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Multifractal Detrended cross-correlation 
(MF-DCCA)

Step I: Consider two time series as:

Step II: Construct profile and trend functions. 
Polynomials or based on empirical mode decomposition 
(EMD, non-parametric)

B. Podobnik and H. Eugene Stanley, PRL 100, 084102 (2008)
Wei-Xing Zhou, PRE 77, 066211 (2008)

{x(i)} {y(i)} i = 1,2,...,N

M s = int
N

s

⎛
⎝⎜

⎞
⎠⎟

Xv (k) = x(lv + i)
i=1

k

∑ lv = (v −1)s

Yv (k) = y(lv + i)
i=1

k

∑

F(s,v) =
1

s
Y [(v −1)s + i − yv (i){ } × X[(v −1)s + i − xv (i){ }

i

s

∑ v = 1,...,M s

F(s,v) =
1

s
Y [N − (v −1)s + i − yv (i){ } × X[N − (v −1)s + i − xv (i){ }

i

s

∑ v = M s +1,...,2M s
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Step IV: Averaging over all segments as:

  

Step V: Demanding a scaling relation according to:

If two underlying series to be equal so one finds 
nothing except the Hurst exponent:

 

Fq (s) =
1

M s

F(s,v)[ ]
q /2

v=1

M s

∑
⎧
⎨
⎩

⎫
⎬
⎭

1/q

F0 (s) = exp
1

2M s

ln F(s,v)[ ]
v=1

M s

∑
⎛

⎝⎜
⎞

⎠⎟

Fq (s)  s
λ (q)

Fq (s)  s
h(q)
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B. Podobnik and H. Eugene Stanley, 
PRL 100, 084102 (2008)
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2D version of MF-DCCA

 

x(i, j) y(i, j) i = 1,...,M j = 1,...,N

M s = int
M

s

⎛
⎝⎜

⎞
⎠⎟

Ns = int
N

s

⎛
⎝⎜

⎞
⎠⎟

Xv,w (i, j) = xv.w (k,l)
l=1

j

∑
k=1

i

∑

Yv,w (i, j) = yv.w (k,l)
l=1

j

∑
k=1

i

∑

Fv,w (s) =
1

s
2

Xv.w (i, j) − Xv,w (i, j)⎡⎣ ⎤⎦ Yv.w (i, j) − Yv,w (i, j)⎡⎣ ⎤⎦
j=1

s

∑
i=1

s

∑

Fq (s) =
1

M sNs

Fv,w (s)⎡⎣ ⎤⎦
q /2

w=1

Ns

∑
v=1

M s

∑
⎛

⎝⎜
⎞

⎠⎟

1/q

F0 (s) = exp
1

2M sNs

ln Fv,w (s)⎡⎣ ⎤⎦
w=1

Ns

∑
v=1

M s

∑
⎛

⎝⎜
⎞

⎠⎟

Fq (s)  s
−λ (q)
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Wei-Xing Zhou, PRE 77, 066211 2008
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Cross-correlation exponent for stationary series
x(i, j) y(i, j) i = 1,...,M j = 1,...,N

µx =
1

N
x(i)

i=1

N

∑ σ x

2 =
1

N −1
x(i) − µx[ ]

2

i=1

N

∑

µy =
1

N
y(i)

i=1

N

∑ σ y

2 =
1

N −1
y(i) − µy
⎡⎣ ⎤⎦

2

i=1

N

∑

Cx (τ ) =
(x(i + τ ) − µx )(x(i) − µx )

σ x

2
 τ −γ x

Cxy (τ ) =
(x(i + τ ) − µx )(y(i) − µy )

σ xσ y

 τ −γ xy

Fv (s) =
1

s
[Yv (i) −Y ][Xv (i) − X]

i=1

s

∑

F
2

2
(s) =

1

M s

Fv (s)[ ]
v=1

M s

∑ ≡ [Yv (s) −Y ][Xv (s) − X]

= sCxy (0) + [s − i][Cxy (i) + Cxy (−i)]  s
1−γ xy

i=1

s−1

∑ + s
2−γ xy

F
2

2
(s)  s

2λ
 s

2−γ xy → 2 − γ xy = 2λ→ γ xy = 2 − 2λ

≡ → γ −Thursday, July 15, 2010



Cross-Correlation in the presence of trends

 

x(i, j) y(i, j) i = 1,...,M j = 1,...,N

F(s,v) =
1

s
Y [(v −1)s + i]− yv (i){ } × X[(v −1)s + i]− xv (i){ }

i

s

∑

F
2

2
(s) =

1

M s

F(s,v)[ ]
v=1

M s

∑
⎧
⎨
⎩

⎫
⎬
⎭
 s

2λ

F
2

2
(s)  s

2λ
 s

2−γ xy → 2 − γ xy = 2λ→ γ xy = 2 − 2λ

if x ≡ y→ γ xx = 2 − 2H
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Strategy for using methods

For stationary anti-correlated signal i.e.  H<0.5,                     
                        SWV
      

For stationary correlated signal, H>0.5,
                          R/S
 

For signal with superimposed trends,
          WTMM, MF-DFA, MF-TWDFA, DMA
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More about DFA
1) The longer the time series, the better the agreement with the 
theory in all methods but DFA behaves more reliable than others

2) DFA cannot give correct results when h(q=2)∼0, In this case it 
is recommended to construct double profile and use DFA method  
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DMA (BDMA & CDMA)
and MF-TWDFA

Refer to :

1) arXiv:cond-mat/0507395
2) PRE 71, 051101 (2005)
3) PRE 73, 016117 (2006)
4) JSTAT P06021 (2010) 
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Limei Xu et. al., PRE 71, 051101 (2005)
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Limei Xu et. al., PRE 71, 051101 (2005)
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Crossover and effect of 
trends

 Polynomial trends: MF-DFAm

 Sinusoidal trends: F-DFA, SVD, chaotic SVD 
and Empirical mode decomposition(EMD) 

Z. Wu et al., PNAS, 104, 38 (2007)
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It has been demonstrated that by MF-DFAm, polynomial 
of order m-1 to be diminished 

Polynomial Trends

K. Hu et. al., PRE 64, 011114 (2001)
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Sinusoidal Trends

K. Hu et. al., PRE 64, 011114 (2001)
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S. Kimiagar, M. Sadegh Movahed et. al., JSTAT P03020 (2009) 

Competition between noise 
and sinusoidal trends

Thursday, July 15, 2010



S. Kimiagar, M. Sadegh Movahed et. al., JSTAT P03020 (2009) 

Competition between noise 
and sinusoidal trends
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• Indeed, this method bases on High-pass filter

Fourier-Detrended

We transform the data set to the 
Fourier space and then truncate the first 
few coefficients of the Fourier 
expansion, finally by inverse 
transformation, the clean data will be 
retrieved   

Physica A 357, 447-454 (2005); Physica A 354, 182-198 (2005); Chaos, Solitons and fractals 26, 777-784 
(2005), Jstat P03020 (2009)
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ivi
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same as that o

x∗

i+j−1 = Γ
∗

ij

The p dominant eigenvalue and associating 
eigendecomposed vector represent the 
superimposed trend and the remaining (d-p) 
demonstrates intrinsic fluctuations 

Singular Value Decomposition (SVD) 

S. hajian and M. Sadegh Movahed, arXiv:0908.0132

p will be given by power 
spectrum
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Empirical Mode decomposition (EMD)

This method is known as non-parametric method

There is a good review by Norden E. Huang 
Proceedings: Mathematical, Physical and Engineering Sciences, Vol. 

454, No. 1971 (Mar. 8, 1998)

In this case, the intrinsic mode functions (IMFs) 
satisfy two conditions:
1) The number of extrema and zero-crossing 
   differs only by one
2) The local average is zero
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1) Identify the local extrema and find their average (Generating 
upper envelop and lower envelope)
2) Subtracting the envelop mean from signal
3) Check the IMF conditions 

D. Kim et. 
all.,R 

Journal, 
Vol.1, 1 

may 2009
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D. Kim et. 
all.,R 

Journal, 
Vol.1, 1 

may 2009
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gray  corresponds to 
variance and black 
corresponds to IMF f
various stopping crit

Z. Hu, et. al., PNAS, 104, 38 (2007)
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Advantages and 
disadvantages

The size of underlying data won’t be invariant 
by using F-DFA, while the size will be 
preserved in SVD and EMD 
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As an example:
Application of DCCA

Sunspot and River flow

solar irradiance to be 
increases when sun 
activity increases and 
the cloud cover to be 
increase resulting 
stream flow increase 
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for 12-24 < s < 130
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El Nino index3 (ENSO) and sun activity

El nino warming the 
surface
La nino cooling the 
surface 
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Main results
There is a universal behavior for river flow 
fluctuation during “12-24 < s < 130” months.
λ=1.17±0.04

There is a crossover at sX∼130 months for 
all mentioned rivers.

The contribution of sun activity represented 
by sunspot is larger than ENSO effect at 
least since 1950.

Due to various values of λ’s for different 
rivers, we conclude that beside sun activity, 
the geographical position, human activity, 
drainage network have also reasonable 
impact on the runoff water fluctuations   
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Summary
I demonstrated the general view about 
fractal and multifractal time series.

Some novel and robust methods in data 
analysis, in various dimensions were explored

The relation of derived exponents and more 
relevant ones from complex systems point of 
view were developed   

I investigated the effect of various trends in 
methods

An application in climate and hydrology was 
considered
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Future perspective

Method construction (More robust and reliable), 
effect of trends and detrending procedures

Applications: Due to robustness technologies for 
recoding various type of data set, ranging form 
nano-scales to MPc scales, we expect that there 
are many fantastic opportunities, especially in 
multidisciplinary sciences to get deep insight and 
new interpretations regarding to phenomena.     
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G S GS 
Θ = 2.5



R = ′1
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Thank you
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