In the name of God

Department of Physics Shahid Beheshti University

ADVANCED TOPICS IN MODER COSMOLOGY

Exercise Set 4

(Date Due: 1393/02/30)

1. For open $\left(\Omega_{\text {total }}^{0}<0\right)$, closed $\left(\Omega_{t o t a l}^{0}>0\right)$ and flat $\left(\Omega_{t o t a l}^{0}=0\right)$ universes and in each case use $w_{\lambda}=-1$ and $w_{\lambda}=-2$ and $w_{\lambda}=-0.1$, compute and plot following parts:

A : plot H as a function of a, z and t.
B : plot \ddot{a} / a as a function of a, z and t.
\mathbf{C} : plot ρ_{m}, ρ_{r} and ρ_{λ} as a function of a, z and t. Determine the dominant epoch of each components.
D : plot deceleration parameter as a function of redshift. Determine the value of redshift which corresponds to accelerating era of universe.
\mathbf{E} : Comoving length scale as a function of a and z. (Hint: $\left.\chi_{0}-\chi=c \int_{t}^{t_{0}} \frac{d t^{\prime}}{a\left(t^{\prime}\right)}\right)$.
F : Look back time (cosmic age), $t(z)$. Also plot t as a function of χ.
\mathbf{G} : Angular diameter distant, d_{A}.
\mathbf{H} : Luminosity distance, d_{l}. Use data of Gold sample and then compute distance modulus, $\mu \equiv m-M$ and compare your results for $\Omega_{m}^{0}=0.31$ and $\Omega_{\lambda}^{0}=0.68$ and ${ }_{\lambda}=-1.0$. What happens if we have $w_{\lambda}>-1$ or $w_{\lambda}<-1$ (i.e. equation of state of dark energy)Show them in the same plot.

I : Comoving volume element Luminosity distance, d_{l}. Use data of Gold sample and then compute distance modulus, $\mu \equiv m-M$ and compare your results for $\Omega_{m}^{0}=0.31$ and $\Omega_{\lambda}^{0}=0.68$ and ${ }_{\lambda}=-1.0$. What happens if we have $w_{\lambda}>-1$ or $w_{\lambda}<-1$ (i.e. equation of state of dark energy)Show them in the same plot.
\mathbf{J} : Compute maximum visible age of astronomical object as a function of redshift for $\Omega_{m}^{0}=0.31$ and $\Omega_{\lambda}^{0}=0.68$ and ${ }_{\lambda}=-1.0$. What happens if we have $w_{\lambda}>-1$ or $w_{\lambda}<-1$ (i.e. equation of state of dark energy)Show them in the same plot.

K : Plot the traveling path of a photon emitted from the horizon of an observer at the big-bang epoch and moves through the observer. Suppose that $\Omega_{m}^{0}=0.31$ and $\Omega_{\lambda}^{0}=0.68$ and ${ }_{\lambda}=-1.0$. What happens if we have $w_{\lambda}>-1$ or $w_{\lambda}<-1$ (i.e. equation of state of dark energy)Show them in the same plot.

L: Compare the Hubble velocity and peculiar velocity for small redshift.
\mathbf{M} : Investigate Alcock-Paczynski quantity and compute it in terms of redshift. Suppose that $\Omega_{m}^{0}=0.31$ and $\Omega_{\lambda}^{0}=0.68$ and ${ }_{\lambda}=-1.0$. What happens if we have $w_{\lambda}>-1$ or $w_{\lambda}<-1$ (i.e. equation of state of dark energy)Show them in the same plot.
\mathbf{N} : Compute CMB shift parameter. Suppose that $\Omega_{m}^{0}=0.31$ and $\Omega_{\lambda}^{0}=0.68$ and ${ }_{\lambda}=-1.0$ and $v_{s}=\frac{c}{\sqrt{3}}$. What happens if we have $w_{\lambda}>-1$ or $w_{\lambda}<-1$ (i.e. equation of state of dark energy)Show them in the same plot.

O : Compute Baryon Acoustic oscillation quantity, β.

$$
\beta=\left[\frac{H(z=0.2) d_{l}^{2}(z=0.35) 0.35(1+0.2)^{2}}{H(z=0.35) d_{l}^{2}(z=0.2) 0.2(1+0.35)^{2}}\right]^{1 / 3}
$$

Suppose that $\Omega_{m}^{0}=0.31$ and $\Omega_{\lambda}^{0}=0.68$ and ${ }_{\lambda}=-1.0$ and $v_{s}=\frac{c}{\sqrt{3}}$. What happens if we have $w_{\lambda}>-1$ or $w_{\lambda}<-1$ (i.e. equation of state of dark energy)Show them in the same plot.
\mathbf{P} : Suppose we have a dynamical dark energy in the universe with $\lambda_{\lambda}=w_{0} a^{-\alpha}$ and $0 \leq \alpha \leq 1$. Do all
\mathbf{Q} : In the plane of $\left(\Omega_{m}^{0}, \Omega_{\lambda}^{0}\right)$ and supposing $w_{\lambda}=-1$, plot the constant curve for $t_{0}=13.86 \mathrm{Gyr}$. Show the region that big-bang is not allowed.
\mathbf{R} : Optical depth: The probability to intersect an object with redshift smaller than z called optical depth, i.e.

$$
\tau(z)=\pi r_{*}^{2} c \int_{0}^{z} \frac{n\left(z^{\prime}\right) d z^{\prime}}{H\left(z^{\prime}\right)\left(1+z^{\prime}\right)}
$$

imagine that $n(z)=n_{0}(1+z)^{3}, n_{0} \sim 0.02 h^{3} M p c^{-3}, r_{*} \sim 10 h^{-1} K p c$, compute and plot optical depth. At which redshift our universe will be opaque based on this cosmological objects.
2. Suppose that the number density of astronomical objects is constant, $n=c t s$, compute the number of astronomical object as a function of redshift. In the case of $n=\exp (-z)$ repeat your calculation.
3. Suppose that we have matter dominant era, according to $\left(\frac{d a}{d t}\right)^{2}=\frac{8 \pi G}{3} a^{2} \rho_{m}-k$, where k determines geometry of universe, solve analytically $a(t)$ as a function of t. (Hint: define an auxiliary variable let say x and then calculate $a(x)$ and $t(x))$

Good luck, Movahed

