In the name of God

Department of Physics Shahid Beheshti University COMPUTATIONAL PHYSICS

Exercise Set 5

(Date Due: 1394/09/25)

1. For cooling differential equation, calculate analytical solution as well as numerical one. Then plot Δ as a function of discretization parameter.
2. Compute Temperature profile for position and time for a rod.
3. Solve Laplace's equation numerically. (relaxation method or finite difference method)
4. Solve the following integration numerically:

$$
\left\langle v_{z}^{2}\right\rangle=\int_{-\infty}^{+\infty} d v_{x} \int_{-\infty}^{+\infty} d v_{y} \int_{-\infty}^{+\infty} d v_{z} v_{z}^{2} p_{v}(\vec{v})
$$

here $p_{v}(\vec{v})=\left(\frac{\beta m}{2 \pi}\right)^{3 / 2} \exp \left(-\frac{\beta m \vec{v}^{2}}{2}\right)$. You can imagine any values for free parameters.
5. Write down a program to compute the rounding errors of your computer for single and double precisions.
6. Using Euler and RF4 methods, solve following initial value problem:

$$
y^{\prime \prime}(t)+a y^{\prime}(t)+\omega^{2} y(t)=\cos \left(\omega_{1} t\right)
$$

with $y(0)=A, y^{\prime}(0)=0$ and take any arbitrary values for other free parameters.
7. Linear Boundary value problem: Suppose numerically $y^{\prime \prime}(t)+2 y^{\prime}(t)+y(t)=0$ with $y(0)=1$ and $y(1)=3$ and compare it with exact solution.
(For more details see:
http://www.stewartcalculus.com/data/CALCULUS\ Concepts\ and\ Contexts/upfiles/3c32ndOrderLinearEqns_Stu.pdf).
8. Non-linear Boundary value problem: Solve numerically following equations:

A: $y^{\prime \prime}(t)=2 y(t)^{3}-6 y(t)-2 t^{3}$ with $y(1)=2$ and $y(2)=5 / 2$. (The exact result is $y(t)=t+1 / t$).
B: $y^{(3)}(t)+y(t) y^{\prime \prime}(t)-y^{\prime}(t)^{2}+1=0$, with $y(0)=0, y^{\prime}(0)=0, y(1)=0$.
$\mathbf{C}: y^{(4)}(t)+y(t)^{2}=\frac{t^{-5 / 2}}{16}\left(9+30 t+105 t^{2}\right)+t^{3}(1-t)^{4}$, with $y(0)=0, y^{\prime}(0)=0, y(1)=0, y^{\prime}(1)=0$, . (The exact solution is $\left.y(t)=t^{3 / 2}(1-t)^{2}\right)$.

Good luck, Movahed

