In the name of God

Department of Physics Shahid Beheshti University COMPUTATIONAL PHYSICS

Exercise Set 5

(Date Due: 1395/02/05)

1. For cooling differential equation, calculate analytical solution as well as numerical one. Then plot Δ as a function of discretization parameter.
2. Compute Temperature profile for position and time for a rod.
3. Solve Laplace's equation numerically. (relaxation method or finite difference method)
4. Solve the following integration numerically:

$$
\left\langle v_{z}^{2}\right\rangle=\int_{-\infty}^{+\infty} d v_{x} \int_{-\infty}^{+\infty} d v_{y} \int_{-\infty}^{+\infty} d v_{z} v_{z}^{2} p_{v}(\vec{v})
$$

here $p_{v}(\vec{v})=\left(\frac{\beta m}{2 \pi}\right)^{3 / 2} \exp \left(-\frac{\beta m \vec{v}^{2}}{2}\right)$. You can imagine any values for free parameters.
5. Write down a program to compute the rounding errors of your computer for single and double precisions.
6. Using Euler and RF4 methods, solve following initial value problem:

$$
y^{\prime \prime}(t)+a y^{\prime}(t)+\omega^{2} y(t)=\cos \left(\omega_{1} t\right)
$$

with $y(0)=A, y^{\prime}(0)=0$ and take any arbitrary values for other free parameters.

Good luck, Movahed

